Blame view
src/sgmm2bin/sgmm2-acc-stats.cc
8.34 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 |
// sgmm2bin/sgmm2-acc-stats.cc // Copyright 2009-2012 Saarland University (Author: Arnab Ghoshal), // Johns Hopkins University (Author: Daniel Povey) // 2014 Guoguo Chen // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #include "base/kaldi-common.h" #include "util/common-utils.h" #include "sgmm2/am-sgmm2.h" #include "hmm/transition-model.h" #include "sgmm2/estimate-am-sgmm2.h" #include "hmm/posterior.h" int main(int argc, char *argv[]) { using namespace kaldi; try { const char *usage = "Accumulate stats for SGMM training. " "Usage: sgmm2-acc-stats [options] <model-in> <feature-rspecifier> " "<posteriors-rspecifier> <stats-out> " "e.g.: sgmm2-acc-stats --gselect=ark:gselect.ark 1.mdl 1.ali scp:train.scp 'ark:ali-to-post 1.ali ark:-|' 1.acc " "(note: gselect option is mandatory) "; ParseOptions po(usage); bool binary = true; std::string gselect_rspecifier, spkvecs_rspecifier, utt2spk_rspecifier; std::string update_flags_str = "vMNwcSt"; BaseFloat rand_prune = 1.0e-05; po.Register("binary", &binary, "Write output in binary mode"); po.Register("gselect", &gselect_rspecifier, "Precomputed Gaussian indices (rspecifier)"); po.Register("spk-vecs", &spkvecs_rspecifier, "Speaker vectors (rspecifier)"); po.Register("utt2spk", &utt2spk_rspecifier, "rspecifier for utterance to speaker map"); po.Register("rand-prune", &rand_prune, "Pruning threshold for posteriors"); po.Register("update-flags", &update_flags_str, "Which SGMM parameters to accumulate " "stats for: subset of vMNwcS."); po.Read(argc, argv); kaldi::SgmmUpdateFlagsType acc_flags = StringToSgmmUpdateFlags(update_flags_str); if (po.NumArgs() != 4) { po.PrintUsage(); exit(1); } if (gselect_rspecifier == "") KALDI_ERR << "--gselect option is mandatory."; std::string model_filename = po.GetArg(1), feature_rspecifier = po.GetArg(2), posteriors_rspecifier = po.GetArg(3), accs_wxfilename = po.GetArg(4); using namespace kaldi; typedef kaldi::int32 int32; int32 num_done = 0, num_err = 0; Vector<double> transition_accs; MleAmSgmm2Accs sgmm_accs(rand_prune); { // this anonymous scope is to ensure deallocation of unnecessary stuff // while we're writing out the accs, which could be a long time for large // models. // Initialize the readers before the model, as the model can // be large, and we don't want to call fork() after reading it if // virtual memory may be low. SequentialBaseFloatMatrixReader feature_reader(feature_rspecifier); RandomAccessPosteriorReader posteriors_reader(posteriors_rspecifier); RandomAccessInt32VectorVectorReader gselect_reader(gselect_rspecifier); RandomAccessBaseFloatVectorReaderMapped spkvecs_reader(spkvecs_rspecifier, utt2spk_rspecifier); RandomAccessTokenReader utt2spk_map(utt2spk_rspecifier); AmSgmm2 am_sgmm; TransitionModel trans_model; { bool binary; Input ki(model_filename, &binary); trans_model.Read(ki.Stream(), binary); am_sgmm.Read(ki.Stream(), binary); } trans_model.InitStats(&transition_accs); sgmm_accs.ResizeAccumulators(am_sgmm, acc_flags, (spkvecs_rspecifier!="")); double tot_like = 0.0; double tot_t = 0; kaldi::Sgmm2PerFrameDerivedVars per_frame_vars; std::string cur_spk; Sgmm2PerSpkDerivedVars spk_vars; for (; !feature_reader.Done(); feature_reader.Next()) { std::string utt = feature_reader.Key(); std::string spk = utt; if (!utt2spk_rspecifier.empty()) { if (!utt2spk_map.HasKey(utt)) { KALDI_WARN << "utt2spk map does not have value for " << utt << ", ignoring this utterance."; continue; } else { spk = utt2spk_map.Value(utt); } } if (spk != cur_spk && cur_spk != "") sgmm_accs.CommitStatsForSpk(am_sgmm, spk_vars); if (spk != cur_spk || spk_vars.Empty()) { spk_vars.Clear(); if (spkvecs_reader.IsOpen()) { if (spkvecs_reader.HasKey(utt)) { spk_vars.SetSpeakerVector(spkvecs_reader.Value(utt)); am_sgmm.ComputePerSpkDerivedVars(&spk_vars); } else { KALDI_WARN << "Cannot find speaker vector for " << utt; num_err++; continue; } } // else spk_vars is "empty" } cur_spk = spk; const Matrix<BaseFloat> &features = feature_reader.Value(); if (!posteriors_reader.HasKey(utt) || posteriors_reader.Value(utt).size() != features.NumRows()) { KALDI_WARN << "No posterior info available for utterance " << utt << " (or wrong size)"; num_err++; continue; } const Posterior &posterior = posteriors_reader.Value(utt); if (!gselect_reader.HasKey(utt) && gselect_reader.Value(utt).size() != features.NumRows()) { KALDI_WARN << "No Gaussian-selection info available for utterance " << utt << " (or wrong size)"; num_err++; } const std::vector<std::vector<int32> > &gselect = gselect_reader.Value(utt); num_done++; BaseFloat tot_like_this_file = 0.0, tot_weight = 0.0; Posterior pdf_posterior; ConvertPosteriorToPdfs(trans_model, posterior, &pdf_posterior); for (size_t i = 0; i < posterior.size(); i++) { am_sgmm.ComputePerFrameVars(features.Row(i), gselect[i], spk_vars, &per_frame_vars); // Accumulates for SGMM. for (size_t j = 0; j < pdf_posterior[i].size(); j++) { int32 pdf_id = pdf_posterior[i][j].first; BaseFloat weight = pdf_posterior[i][j].second; tot_like_this_file += sgmm_accs.Accumulate(am_sgmm, per_frame_vars, pdf_id, weight, &spk_vars) * weight; tot_weight += weight; } // Accumulates for transitions. for (size_t j = 0; j < posterior[i].size(); j++) { int32 tid = posterior[i][j].first; BaseFloat weight = posterior[i][j].second; trans_model.Accumulate(weight, tid, &transition_accs); } } KALDI_VLOG(2) << "Average like for this file is " << (tot_like_this_file/tot_weight) << " over " << tot_weight <<" frames."; tot_like += tot_like_this_file; tot_t += tot_weight; if (num_done % 50 == 0) { KALDI_LOG << "Processed " << num_done << " utterances; for utterance " << utt << " avg. like is " << (tot_like_this_file/tot_weight) << " over " << tot_weight <<" frames."; } } sgmm_accs.CommitStatsForSpk(am_sgmm, spk_vars); // commit stats for // last speaker. KALDI_LOG << "Overall like per frame (Gaussian only) = " << (tot_like/tot_t) << " over " << tot_t << " frames."; KALDI_LOG << "Done " << num_done << " files, " << num_err << " with errors."; } { Output ko(accs_wxfilename, binary); transition_accs.Write(ko.Stream(), binary); sgmm_accs.Write(ko.Stream(), binary); } KALDI_LOG << "Written accs."; return (num_done != 0 ? 0 : 1); } catch(const std::exception &e) { std::cerr << e.what(); return -1; } } |