Blame view
src/sgmm2bin/sgmm2-est-fmllr.cc
11.4 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 |
// sgmm2bin/sgmm2-est-fmllr.cc // Copyright 2009-2012 Saarland University Microsoft Corporation Johns Hopkins University (Author: Daniel Povey) // 2014 Guoguo Chen // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #include <string> using std::string; #include <vector> using std::vector; #include "base/kaldi-common.h" #include "util/common-utils.h" #include "sgmm2/am-sgmm2.h" #include "sgmm2/fmllr-sgmm2.h" #include "hmm/transition-model.h" #include "hmm/posterior.h" namespace kaldi { void AccumulateForUtterance(const Matrix<BaseFloat> &feats, const Matrix<BaseFloat> &transformed_feats, // if already fMLLR const std::vector<std::vector<int32> > &gselect, const Posterior &post, const TransitionModel &trans_model, const AmSgmm2 &am_sgmm, BaseFloat logdet, Sgmm2PerSpkDerivedVars *spk_vars, FmllrSgmm2Accs *spk_stats) { kaldi::Sgmm2PerFrameDerivedVars per_frame_vars; Posterior pdf_post; ConvertPosteriorToPdfs(trans_model, post, &pdf_post); for (size_t t = 0; t < post.size(); t++) { // per-frame vars only used for computing posteriors... use the // transformed feats for this, if available. am_sgmm.ComputePerFrameVars(transformed_feats.Row(t), gselect[t], *spk_vars, &per_frame_vars); for (size_t j = 0; j < pdf_post[t].size(); j++) { int32 pdf_id = pdf_post[t][j].first; Matrix<BaseFloat> posteriors; am_sgmm.ComponentPosteriors(per_frame_vars, pdf_id, spk_vars, &posteriors); posteriors.Scale(pdf_post[t][j].second); spk_stats->AccumulateFromPosteriors(am_sgmm, *spk_vars, feats.Row(t), gselect[t], posteriors, pdf_id); } } } } // end namespace kaldi int main(int argc, char *argv[]) { try { typedef kaldi::int32 int32; using namespace kaldi; const char *usage = "Estimate FMLLR transform for SGMMs, either per utterance or for the " "supplied set of speakers (with spk2utt option). " "Reads state-level posteriors. Writes to a table of matrices. " "--gselect option is mandatory. " "Usage: sgmm2-est-fmllr [options] <model-in> <feature-rspecifier> " "<post-rspecifier> <mats-wspecifier> "; ParseOptions po(usage); string spk2utt_rspecifier, spkvecs_rspecifier, fmllr_rspecifier, gselect_rspecifier; BaseFloat min_count = 100; Sgmm2FmllrConfig fmllr_opts; po.Register("spk2utt", &spk2utt_rspecifier, "File to read speaker to utterance-list map from."); po.Register("spkvec-min-count", &min_count, "Minimum count needed to estimate speaker vectors"); po.Register("spk-vecs", &spkvecs_rspecifier, "Speaker vectors to use during aligment (rspecifier)"); po.Register("input-fmllr", &fmllr_rspecifier, "Initial FMLLR transform per speaker (rspecifier)"); po.Register("gselect", &gselect_rspecifier, "Precomputed Gaussian indices (rspecifier)"); fmllr_opts.Register(&po); po.Read(argc, argv); if (po.NumArgs() != 4) { po.PrintUsage(); exit(1); } string model_rxfilename = po.GetArg(1), feature_rspecifier = po.GetArg(2), post_rspecifier = po.GetArg(3), fmllr_wspecifier = po.GetArg(4); TransitionModel trans_model; AmSgmm2 am_sgmm; Sgmm2FmllrGlobalParams fmllr_globals; { bool binary; Input ki(model_rxfilename, &binary); trans_model.Read(ki.Stream(), binary); am_sgmm.Read(ki.Stream(), binary); fmllr_globals.Read(ki.Stream(), binary); } if (gselect_rspecifier == "") KALDI_ERR << "--gselect option is required."; RandomAccessPosteriorReader post_reader(post_rspecifier); RandomAccessBaseFloatVectorReader spkvecs_reader(spkvecs_rspecifier); RandomAccessInt32VectorVectorReader gselect_reader(gselect_rspecifier); RandomAccessBaseFloatMatrixReader fmllr_reader(fmllr_rspecifier); BaseFloatMatrixWriter fmllr_writer(fmllr_wspecifier); int32 dim = am_sgmm.FeatureDim(); FmllrSgmm2Accs spk_stats; spk_stats.Init(dim, am_sgmm.NumGauss()); Matrix<BaseFloat> fmllr_xform(dim, dim + 1); BaseFloat logdet = 0.0; double tot_impr = 0.0, tot_t = 0.0; int32 num_done = 0, num_err = 0; std::vector<std::vector<int32> > empty_gselect; if (!spk2utt_rspecifier.empty()) { // per-speaker adaptation SequentialTokenVectorReader spk2utt_reader(spk2utt_rspecifier); RandomAccessBaseFloatMatrixReader feature_reader(feature_rspecifier); for (; !spk2utt_reader.Done(); spk2utt_reader.Next()) { spk_stats.SetZero(); string spk = spk2utt_reader.Key(); const vector<string> &uttlist = spk2utt_reader.Value(); Sgmm2PerSpkDerivedVars spk_vars; if (spkvecs_reader.IsOpen()) { if (spkvecs_reader.HasKey(spk)) { spk_vars.SetSpeakerVector(spkvecs_reader.Value(spk)); am_sgmm.ComputePerSpkDerivedVars(&spk_vars); } else { KALDI_WARN << "Cannot find speaker vector for " << spk; num_err++; continue; } } // else spk_vars is "empty" if (fmllr_reader.IsOpen()) { if (fmllr_reader.HasKey(spk)) { fmllr_xform.CopyFromMat(fmllr_reader.Value(spk)); logdet = fmllr_xform.Range(0, dim, 0, dim).LogDet(); } else { KALDI_WARN << "Cannot find FMLLR transform for " << spk; fmllr_xform.SetUnit(); logdet = 0.0; } } else { fmllr_xform.SetUnit(); logdet = 0.0; } for (size_t i = 0; i < uttlist.size(); i++) { std::string utt = uttlist[i]; if (!feature_reader.HasKey(utt)) { KALDI_WARN << "Did not find features for utterance " << utt; num_err++; continue; } const Matrix<BaseFloat> &feats = feature_reader.Value(utt); if (!post_reader.HasKey(utt) || post_reader.Value(utt).size() != feats.NumRows()) { KALDI_WARN << "Did not find posteriors for utterance " << utt << " (or wrong size)."; num_err++; continue; } const Posterior &post = post_reader.Value(utt); if (!gselect_reader.HasKey(utt) || gselect_reader.Value(utt).size() != feats.NumRows()) { KALDI_WARN << "Did not find gselect info for utterance " << utt << " (or wrong size)."; num_err++; continue; } const std::vector<std::vector<int32> > &gselect = gselect_reader.Value(utt); Matrix<BaseFloat> transformed_feats(feats); for (int32 r = 0; r < transformed_feats.NumRows(); r++) { SubVector<BaseFloat> row(transformed_feats, r); ApplyAffineTransform(fmllr_xform, &row); } AccumulateForUtterance(feats, transformed_feats, gselect, post, trans_model, am_sgmm, logdet, &spk_vars, &spk_stats); num_done++; } // end looping over all utterances of the current speaker BaseFloat impr, spk_frame_count; // Compute the FMLLR transform and write it out. spk_stats.Update(am_sgmm, fmllr_globals, fmllr_opts, &fmllr_xform, &spk_frame_count, &impr); fmllr_writer.Write(spk, fmllr_xform); tot_impr += impr; tot_t += spk_frame_count; } // end looping over speakers } else { // per-utterance adaptation SequentialBaseFloatMatrixReader feature_reader(feature_rspecifier); for (; !feature_reader.Done(); feature_reader.Next()) { string utt = feature_reader.Key(); const Matrix<BaseFloat> &feats = feature_reader.Value(); if (!post_reader.HasKey(utt) || post_reader.Value(utt).size() != feats.NumRows()) { KALDI_WARN << "Did not find posteriors for utterance " << utt << " (or wrong size)."; num_err++; continue; } const Posterior &post = post_reader.Value(utt); if (!gselect_reader.HasKey(utt) || gselect_reader.Value(utt).size() != feats.NumRows()) { KALDI_WARN << "Did not find gselect info for utterance " << utt << " (or wrong size)."; num_err++; continue; } const std::vector<std::vector<int32> > &gselect = gselect_reader.Value(utt); if (fmllr_reader.IsOpen()) { if (fmllr_reader.HasKey(utt)) { fmllr_xform.CopyFromMat(fmllr_reader.Value(utt)); logdet = fmllr_xform.Range(0, dim, 0, dim).LogDet(); } else { KALDI_WARN << "Cannot find FMLLR transform for " << utt; fmllr_xform.SetUnit(); logdet = 0.0; } } else { fmllr_xform.SetUnit(); logdet = 0.0; } Matrix<BaseFloat> transformed_feats(feats); for (int32 r = 0; r < transformed_feats.NumRows(); r++) { SubVector<BaseFloat> row(transformed_feats, r); ApplyAffineTransform(fmllr_xform, &row); } Sgmm2PerSpkDerivedVars spk_vars; if (spkvecs_reader.IsOpen()) { if (spkvecs_reader.HasKey(utt)) { spk_vars.SetSpeakerVector(spkvecs_reader.Value(utt)); am_sgmm.ComputePerSpkDerivedVars(&spk_vars); } else { KALDI_WARN << "Cannot find speaker vector for " << utt; num_err++; continue; } } // else spk_vars is "empty" spk_stats.SetZero(); AccumulateForUtterance(feats, transformed_feats, gselect, post, trans_model, am_sgmm, logdet, &spk_vars, &spk_stats); num_done++; BaseFloat impr, spk_frame_count; // Compute the FMLLR transform and write it out. spk_stats.Update(am_sgmm, fmllr_globals, fmllr_opts, &fmllr_xform, &spk_frame_count, &impr); fmllr_writer.Write(utt, fmllr_xform); tot_impr += impr; tot_t += spk_frame_count; } } KALDI_LOG << "Done " << num_done << " files, " << num_err << " with errors."; KALDI_LOG << "Overall auxf impr per frame is " << (tot_impr / tot_t) << " per frame, over " << tot_t << " frames."; return (num_done != 0 ? 0 : 1); } catch(const std::exception &e) { std::cerr << e.what(); return -1; } } |