Blame view

src/sgmm2bin/sgmm2-est-fmllr.cc 11.4 KB
8dcb6dfcb   Yannick Estève   first commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
  // sgmm2bin/sgmm2-est-fmllr.cc
  
  // Copyright 2009-2012  Saarland University   Microsoft Corporation  Johns Hopkins University (Author: Daniel Povey)
  //                2014  Guoguo Chen
  
  // See ../../COPYING for clarification regarding multiple authors
  //
  // Licensed under the Apache License, Version 2.0 (the "License");
  // you may not use this file except in compliance with the License.
  // You may obtain a copy of the License at
  //
  //  http://www.apache.org/licenses/LICENSE-2.0
  //
  // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
  // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
  // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
  // MERCHANTABLITY OR NON-INFRINGEMENT.
  // See the Apache 2 License for the specific language governing permissions and
  // limitations under the License.
  
  #include <string>
  using std::string;
  #include <vector>
  using std::vector;
  
  #include "base/kaldi-common.h"
  #include "util/common-utils.h"
  #include "sgmm2/am-sgmm2.h"
  #include "sgmm2/fmllr-sgmm2.h"
  #include "hmm/transition-model.h"
  #include "hmm/posterior.h"
  
  namespace kaldi {
  
  void AccumulateForUtterance(const Matrix<BaseFloat> &feats,
                              const Matrix<BaseFloat> &transformed_feats, // if already fMLLR
                              const std::vector<std::vector<int32> > &gselect,
                              const Posterior &post,
                              const TransitionModel &trans_model,
                              const AmSgmm2 &am_sgmm,
                              BaseFloat logdet,
                              Sgmm2PerSpkDerivedVars *spk_vars,
                              FmllrSgmm2Accs *spk_stats) {
    kaldi::Sgmm2PerFrameDerivedVars per_frame_vars;
  
    Posterior pdf_post;
    ConvertPosteriorToPdfs(trans_model, post, &pdf_post);
    for (size_t t = 0; t < post.size(); t++) {
      // per-frame vars only used for computing posteriors... use the
      // transformed feats for this, if available.
      am_sgmm.ComputePerFrameVars(transformed_feats.Row(t), gselect[t],
                                  *spk_vars, &per_frame_vars);
      
  
      for (size_t j = 0; j < pdf_post[t].size(); j++) {
        int32 pdf_id = pdf_post[t][j].first;
        Matrix<BaseFloat> posteriors;
        am_sgmm.ComponentPosteriors(per_frame_vars, pdf_id,
                                    spk_vars, &posteriors);
        posteriors.Scale(pdf_post[t][j].second);
        spk_stats->AccumulateFromPosteriors(am_sgmm, *spk_vars, feats.Row(t),
                                            gselect[t], posteriors, pdf_id);
      }
    }
  }
  
  }  // end namespace kaldi
  
  int main(int argc, char *argv[]) {
    try {
      typedef kaldi::int32 int32;
      using namespace kaldi;
      const char *usage =
          "Estimate FMLLR transform for SGMMs, either per utterance or for the "
          "supplied set of speakers (with spk2utt option).
  "
          "Reads state-level posteriors. Writes to a table of matrices.
  "
          "--gselect option is mandatory.
  "
          "Usage: sgmm2-est-fmllr [options] <model-in> <feature-rspecifier> "
          "<post-rspecifier> <mats-wspecifier>
  ";
      
      ParseOptions po(usage);
      string spk2utt_rspecifier, spkvecs_rspecifier, fmllr_rspecifier,
          gselect_rspecifier;
      BaseFloat min_count = 100;
      Sgmm2FmllrConfig fmllr_opts;
      
      po.Register("spk2utt", &spk2utt_rspecifier,
                  "File to read speaker to utterance-list map from.");
      po.Register("spkvec-min-count", &min_count,
                  "Minimum count needed to estimate speaker vectors");
      po.Register("spk-vecs", &spkvecs_rspecifier,
                  "Speaker vectors to use during aligment (rspecifier)");
      po.Register("input-fmllr", &fmllr_rspecifier,
                  "Initial FMLLR transform per speaker (rspecifier)");
      po.Register("gselect", &gselect_rspecifier,
                  "Precomputed Gaussian indices (rspecifier)");
      fmllr_opts.Register(&po);
  
      po.Read(argc, argv);
  
      if (po.NumArgs() != 4) {
        po.PrintUsage();
        exit(1);
      }
  
      string model_rxfilename = po.GetArg(1),
          feature_rspecifier = po.GetArg(2),
          post_rspecifier = po.GetArg(3),
          fmllr_wspecifier = po.GetArg(4);
  
      TransitionModel trans_model;
      AmSgmm2 am_sgmm;
      Sgmm2FmllrGlobalParams fmllr_globals;
      {
        bool binary;
        Input ki(model_rxfilename, &binary);
        trans_model.Read(ki.Stream(), binary);
        am_sgmm.Read(ki.Stream(), binary);
        fmllr_globals.Read(ki.Stream(), binary);
      }
      if (gselect_rspecifier == "")
        KALDI_ERR << "--gselect option is required.";
      
      RandomAccessPosteriorReader post_reader(post_rspecifier);
      RandomAccessBaseFloatVectorReader spkvecs_reader(spkvecs_rspecifier);
      RandomAccessInt32VectorVectorReader gselect_reader(gselect_rspecifier);
      RandomAccessBaseFloatMatrixReader fmllr_reader(fmllr_rspecifier);
  
      BaseFloatMatrixWriter fmllr_writer(fmllr_wspecifier);
  
      int32 dim = am_sgmm.FeatureDim();
      FmllrSgmm2Accs spk_stats;
      spk_stats.Init(dim, am_sgmm.NumGauss());
      Matrix<BaseFloat> fmllr_xform(dim, dim + 1);
      BaseFloat logdet = 0.0;
      double tot_impr = 0.0, tot_t = 0.0;
      int32 num_done = 0, num_err = 0;
      std::vector<std::vector<int32> > empty_gselect;
  
      if (!spk2utt_rspecifier.empty()) {  // per-speaker adaptation
        SequentialTokenVectorReader spk2utt_reader(spk2utt_rspecifier);
        RandomAccessBaseFloatMatrixReader feature_reader(feature_rspecifier);
  
        for (; !spk2utt_reader.Done(); spk2utt_reader.Next()) {
          spk_stats.SetZero();
          string spk = spk2utt_reader.Key();
          const vector<string> &uttlist = spk2utt_reader.Value();
  
          Sgmm2PerSpkDerivedVars spk_vars;
          if (spkvecs_reader.IsOpen()) {
            if (spkvecs_reader.HasKey(spk)) {
              spk_vars.SetSpeakerVector(spkvecs_reader.Value(spk));
              am_sgmm.ComputePerSpkDerivedVars(&spk_vars);
            } else {
              KALDI_WARN << "Cannot find speaker vector for " << spk;
              num_err++;
              continue;
            }
          }  // else spk_vars is "empty"
  
          if (fmllr_reader.IsOpen()) {
            if (fmllr_reader.HasKey(spk)) {
              fmllr_xform.CopyFromMat(fmllr_reader.Value(spk));
              logdet = fmllr_xform.Range(0, dim, 0, dim).LogDet();
            } else {
              KALDI_WARN << "Cannot find FMLLR transform for " << spk;
              fmllr_xform.SetUnit();
              logdet = 0.0;
            }
          } else {
            fmllr_xform.SetUnit();
            logdet = 0.0;
          }
  
          for (size_t i = 0; i < uttlist.size(); i++) {
            std::string utt = uttlist[i];
            if (!feature_reader.HasKey(utt)) {
              KALDI_WARN << "Did not find features for utterance " << utt;
              num_err++;
              continue;
            }
            const Matrix<BaseFloat> &feats = feature_reader.Value(utt);
            if (!post_reader.HasKey(utt) ||
                post_reader.Value(utt).size() != feats.NumRows()) {
              KALDI_WARN << "Did not find posteriors for utterance " << utt
                         << " (or wrong size).";
              num_err++;
              continue;
            }
            const Posterior &post = post_reader.Value(utt);
            if (!gselect_reader.HasKey(utt) ||
                gselect_reader.Value(utt).size() != feats.NumRows()) {
              KALDI_WARN << "Did not find gselect info for utterance " << utt
                         << " (or wrong size).";
              num_err++;
              continue;
            }
            const std::vector<std::vector<int32> > &gselect =
                gselect_reader.Value(utt);
            
            Matrix<BaseFloat> transformed_feats(feats);
            for (int32 r = 0; r < transformed_feats.NumRows(); r++) {
              SubVector<BaseFloat> row(transformed_feats, r);
              ApplyAffineTransform(fmllr_xform, &row);
            }
            AccumulateForUtterance(feats, transformed_feats, gselect,
                                   post, trans_model, am_sgmm,
                                   logdet, &spk_vars, &spk_stats);
            num_done++;
          }  // end looping over all utterances of the current speaker
          
          BaseFloat impr, spk_frame_count;
          // Compute the FMLLR transform and write it out.
          spk_stats.Update(am_sgmm, fmllr_globals, fmllr_opts, &fmllr_xform,
                           &spk_frame_count, &impr);
          fmllr_writer.Write(spk, fmllr_xform);
          tot_impr += impr;
          tot_t += spk_frame_count;
        }  // end looping over speakers
      } else {  // per-utterance adaptation
        SequentialBaseFloatMatrixReader feature_reader(feature_rspecifier);
        for (; !feature_reader.Done(); feature_reader.Next()) {
          string utt = feature_reader.Key();
          const Matrix<BaseFloat> &feats = feature_reader.Value();
  
          if (!post_reader.HasKey(utt) ||
              post_reader.Value(utt).size() != feats.NumRows()) {
            KALDI_WARN << "Did not find posteriors for utterance " << utt
                       << " (or wrong size).";
            num_err++;
            continue;
          }
          const Posterior &post = post_reader.Value(utt);
          if (!gselect_reader.HasKey(utt) ||
              gselect_reader.Value(utt).size() != feats.NumRows()) {
            KALDI_WARN << "Did not find gselect info for utterance " << utt
                       << " (or wrong size).";
            num_err++;
            continue;
          }
          const std::vector<std::vector<int32> > &gselect =
              gselect_reader.Value(utt);
          
          if (fmllr_reader.IsOpen()) {
            if (fmllr_reader.HasKey(utt)) {
              fmllr_xform.CopyFromMat(fmllr_reader.Value(utt));
              logdet = fmllr_xform.Range(0, dim, 0, dim).LogDet();
            } else {
              KALDI_WARN << "Cannot find FMLLR transform for " << utt;
              fmllr_xform.SetUnit();
              logdet = 0.0;
            }
          } else {
            fmllr_xform.SetUnit();
            logdet = 0.0;
          }
          
          Matrix<BaseFloat> transformed_feats(feats);
          for (int32 r = 0; r < transformed_feats.NumRows(); r++) {
            SubVector<BaseFloat> row(transformed_feats, r);
            ApplyAffineTransform(fmllr_xform, &row);
          }
          
          Sgmm2PerSpkDerivedVars spk_vars;
          if (spkvecs_reader.IsOpen()) {
            if (spkvecs_reader.HasKey(utt)) {
              spk_vars.SetSpeakerVector(spkvecs_reader.Value(utt));
              am_sgmm.ComputePerSpkDerivedVars(&spk_vars);
            } else {
              KALDI_WARN << "Cannot find speaker vector for " << utt;
              num_err++;
              continue;
            }
          }  // else spk_vars is "empty"
  
          spk_stats.SetZero();
  
          AccumulateForUtterance(feats, transformed_feats, gselect,
                                 post, trans_model, am_sgmm,
                                 logdet, &spk_vars, &spk_stats);
          num_done++;
          
          BaseFloat impr, spk_frame_count;
          // Compute the FMLLR transform and write it out.
          spk_stats.Update(am_sgmm, fmllr_globals, fmllr_opts, &fmllr_xform,
                           &spk_frame_count, &impr);
          fmllr_writer.Write(utt, fmllr_xform);
          tot_impr += impr;
          tot_t += spk_frame_count;
        }
      }
  
      KALDI_LOG << "Done " << num_done << " files, " << num_err << " with errors.";
      KALDI_LOG << "Overall auxf impr per frame is " << (tot_impr / tot_t)
                << " per frame, over " << tot_t << " frames.";
      return (num_done != 0 ? 0 : 1);
    } catch(const std::exception &e) {
      std::cerr << e.what();
      return -1;
    }
  }