Blame view

src/sgmm2bin/sgmm2-est-spkvecs.cc 10 KB
8dcb6dfcb   Yannick Estève   first commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
  // sgmm2bin/sgmm2-est-spkvecs.cc
  
  // Copyright 2009-2012  Saarland University  Microsoft Corporation
  //                      Johns Hopkins University (Author: Daniel Povey)
  //                2014  Guoguo Chen
  
  // See ../../COPYING for clarification regarding multiple authors
  //
  // Licensed under the Apache License, Version 2.0 (the "License");
  // you may not use this file except in compliance with the License.
  // You may obtain a copy of the License at
  //
  //  http://www.apache.org/licenses/LICENSE-2.0
  //
  // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
  // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
  // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
  // MERCHANTABLITY OR NON-INFRINGEMENT.
  // See the Apache 2 License for the specific language governing permissions and
  // limitations under the License.
  
  #include <string>
  using std::string;
  #include <vector>
  using std::vector;
  
  #include "base/kaldi-common.h"
  #include "util/common-utils.h"
  #include "sgmm2/am-sgmm2.h"
  #include "sgmm2/estimate-am-sgmm2.h"
  #include "hmm/transition-model.h"
  #include "hmm/posterior.h"
  
  namespace kaldi {
  
  void AccumulateForUtterance(const Matrix<BaseFloat> &feats,
                              const Posterior &post,
                              const TransitionModel &trans_model,
                              const AmSgmm2 &am_sgmm,
                              const vector< vector<int32> > &gselect,
                              Sgmm2PerSpkDerivedVars *spk_vars,
                              MleSgmm2SpeakerAccs *spk_stats) {
    kaldi::Sgmm2PerFrameDerivedVars per_frame_vars;
  
    KALDI_ASSERT(gselect.size() == feats.NumRows());
    Posterior pdf_post;
    ConvertPosteriorToPdfs(trans_model, post, &pdf_post);
    for (size_t i = 0; i < post.size(); i++) {
      am_sgmm.ComputePerFrameVars(feats.Row(i), gselect[i],
                                  *spk_vars, &per_frame_vars);
      
      for (size_t j = 0; j < pdf_post[i].size(); j++) {
        int32 pdf_id = pdf_post[i][j].first;
        spk_stats->Accumulate(am_sgmm, per_frame_vars, pdf_id,
                              pdf_post[i][j].second, spk_vars);
      }
    }
  }
  
  }  // end namespace kaldi
  
  int main(int argc, char *argv[]) {
    try {
      typedef kaldi::int32 int32;
      using namespace kaldi;
      const char *usage =
          "Estimate SGMM speaker vectors, either per utterance or for the "
          "supplied set of speakers (with spk2utt option).
  "
          "Reads Gaussian-level posteriors. Writes to a table of vectors.
  "
          "Usage: sgmm2-est-spkvecs [options] <model-in> <feature-rspecifier> "
          "<post-rspecifier> <vecs-wspecifier>
  "
          "note: --gselect option is required.";
      
      ParseOptions po(usage);
      string gselect_rspecifier, spk2utt_rspecifier, spkvecs_rspecifier;
      BaseFloat min_count = 100;
      BaseFloat rand_prune = 1.0e-05;
  
      po.Register("gselect", &gselect_rspecifier,
                  "rspecifier for precomputed per-frame Gaussian indices from.");
      po.Register("spk2utt", &spk2utt_rspecifier,
          "File to read speaker to utterance-list map from.");
      po.Register("spkvec-min-count", &min_count,
          "Minimum count needed to estimate speaker vectors");
      po.Register("rand-prune", &rand_prune, "Pruning threshold for posteriors");
      po.Register("spk-vecs", &spkvecs_rspecifier, "Speaker vectors to use during aligment (rspecifier)");
      po.Read(argc, argv);
  
      if (po.NumArgs() != 4) {
        po.PrintUsage();
        exit(1);
      }
      if (gselect_rspecifier == "")
        KALDI_ERR << "--gselect option is mandatory.";
      
      string model_rxfilename = po.GetArg(1),
          feature_rspecifier = po.GetArg(2),
          post_rspecifier = po.GetArg(3),
          vecs_wspecifier = po.GetArg(4);
  
      TransitionModel trans_model;
      AmSgmm2 am_sgmm;
      {
        bool binary;
        Input ki(model_rxfilename, &binary);
        trans_model.Read(ki.Stream(), binary);
        am_sgmm.Read(ki.Stream(), binary);
      }
      MleSgmm2SpeakerAccs spk_stats(am_sgmm, rand_prune);
  
      RandomAccessPosteriorReader post_reader(post_rspecifier);
      RandomAccessInt32VectorVectorReader gselect_reader(gselect_rspecifier);
      RandomAccessBaseFloatVectorReader spkvecs_reader(spkvecs_rspecifier);
  
      BaseFloatVectorWriter vecs_writer(vecs_wspecifier);
  
      double tot_impr = 0.0, tot_t = 0.0;
      int32 num_done = 0, num_err = 0;
      std::vector<std::vector<int32> > empty_gselect;
  
      if (!spk2utt_rspecifier.empty()) {  // per-speaker adaptation
        SequentialTokenVectorReader spk2utt_reader(spk2utt_rspecifier);
        RandomAccessBaseFloatMatrixReader feature_reader(feature_rspecifier);
  
        for (; !spk2utt_reader.Done(); spk2utt_reader.Next()) {
          spk_stats.Clear();
          string spk = spk2utt_reader.Key();
          const vector<string> &uttlist = spk2utt_reader.Value();
  
          Sgmm2PerSpkDerivedVars spk_vars;
          if (spkvecs_reader.IsOpen()) {
            if (spkvecs_reader.HasKey(spk)) {
              spk_vars.SetSpeakerVector(spkvecs_reader.Value(spk));
              am_sgmm.ComputePerSpkDerivedVars(&spk_vars);
            } else {
              KALDI_WARN << "Cannot find speaker vector for speaker " << spk
                         << ", not processing this speaker.";
              num_err++; // standard Kaldi behavior is to not process data
              // when errors like this happen, as it's generally a script error;
              continue;
            }
          }  // else spk_vars is "empty"
  
          for (size_t i = 0; i < uttlist.size(); i++) {
            std::string utt = uttlist[i];
            if (!feature_reader.HasKey(utt)) {
              KALDI_WARN << "Did not find features for utterance " << utt;
              continue;
            }
            if (!post_reader.HasKey(utt)) {
              KALDI_WARN << "Did not find posteriors for utterance " << utt;
              num_err++;
              continue;
            }
            const Matrix<BaseFloat> &feats = feature_reader.Value(utt);
            const Posterior &post = post_reader.Value(utt);
            if (static_cast<int32>(post.size()) != feats.NumRows()) {
              KALDI_WARN << "Posterior vector has wrong size " << (post.size())
                         << " vs. " << (feats.NumRows());
              num_err++;
              continue;
            }
            if (!gselect_reader.HasKey(utt) ||
                gselect_reader.Value(utt).size() != feats.NumRows()) {
              KALDI_WARN << "No Gaussian-selection info available for utterance "
                         << utt << " (or wrong size)";
              num_err++;
              continue;
            }
            const std::vector<std::vector<int32> > &gselect =
                gselect_reader.Value(utt);
            
            AccumulateForUtterance(feats, post, trans_model, am_sgmm,
                                   gselect, &spk_vars, &spk_stats);
            num_done++;
          }  // end looping over all utterances of the current speaker
  
          BaseFloat impr, spk_tot_t;
          {  // Compute the spk_vec and write it out.
            Vector<BaseFloat> spk_vec(am_sgmm.SpkSpaceDim(), kSetZero);
            if (spk_vars.GetSpeakerVector().Dim() != 0)
              spk_vec.CopyFromVec(spk_vars.GetSpeakerVector());
            spk_stats.Update(am_sgmm, min_count, &spk_vec, &impr, &spk_tot_t);
            vecs_writer.Write(spk, spk_vec);
          }
          KALDI_LOG << "For speaker " << spk << ", auxf-impr from speaker vector is "
                    << (impr/spk_tot_t) << ", over " << spk_tot_t << " frames.";
          tot_impr += impr;
          tot_t += spk_tot_t;
        }  // end looping over speakers
      } else {  // per-utterance adaptation
        SequentialBaseFloatMatrixReader feature_reader(feature_rspecifier);
        for (; !feature_reader.Done(); feature_reader.Next()) {
          string utt = feature_reader.Key();        
          const Matrix<BaseFloat> &feats = feature_reader.Value();
          if (!post_reader.HasKey(utt) ||
              post_reader.Value(utt).size() != feats.NumRows()) {
            KALDI_WARN << "Did not find posts for utterance "
                       << utt << " (or wrong size).";
            num_err++;
            continue;
          }
          const Posterior &post = post_reader.Value(utt);
  
          Sgmm2PerSpkDerivedVars spk_vars;
          if (spkvecs_reader.IsOpen()) {
            if (spkvecs_reader.HasKey(utt)) {
              spk_vars.SetSpeakerVector(spkvecs_reader.Value(utt));
              am_sgmm.ComputePerSpkDerivedVars(&spk_vars);
            } else {
              KALDI_WARN << "Cannot find speaker vector for utterance " << utt
                         << ", not processing it.";
              num_err++;
              continue;
            }
          }  // else spk_vars is "empty"
          
          num_done++;
  
          if (!gselect_reader.HasKey(utt) ||
              gselect_reader.Value(utt).size() != feats.NumRows()) {
            KALDI_WARN << "No Gaussian-selection info available for utterance "
                       << utt << " (or wrong size)";
            num_err++;
            continue;
          }
          const std::vector<std::vector<int32> > &gselect =
              gselect_reader.Value(utt);
  
          spk_stats.Clear();
          
          AccumulateForUtterance(feats, post, trans_model, am_sgmm,
                                 gselect, &spk_vars, &spk_stats);
  
          BaseFloat impr, utt_tot_t;
          {  // Compute the spk_vec and write it out.
            Vector<BaseFloat> spk_vec(am_sgmm.SpkSpaceDim(), kSetZero);
            if (spk_vars.GetSpeakerVector().Dim() != 0)
              spk_vec.CopyFromVec(spk_vars.GetSpeakerVector());
            spk_stats.Update(am_sgmm, min_count, &spk_vec, &impr, &utt_tot_t);
            vecs_writer.Write(utt, spk_vec);
          }
          KALDI_LOG << "For utterance " << utt << ", auxf-impr from speaker vectors is "
                    << (impr/utt_tot_t) << ", over " << utt_tot_t << " frames.";
          tot_impr += impr;
          tot_t += utt_tot_t;
        }
      }
  
      KALDI_LOG << "Overall auxf impr per frame is "
                << (tot_impr / tot_t) << " over " << tot_t << " frames.";
      KALDI_LOG << "Done " << num_done << " files, " << num_err << " with errors.";
      return (num_done != 0 ? 0 : 1);
    } catch(const std::exception &e) {
      std::cerr << e.what();
      return -1;
    }
  }