Blame view

src/sgmm2bin/sgmm2-gselect.cc 3.75 KB
8dcb6dfcb   Yannick Estève   first commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
  // sgmm2bin/sgmm2-gselect.cc
  
  // Copyright 2009-2012   Saarland University  Microsoft Corporation
  //                       Johns Hopkins University (author: Daniel Povey)
  
  // See ../../COPYING for clarification regarding multiple authors
  //
  // Licensed under the Apache License, Version 2.0 (the "License");
  // you may not use this file except in compliance with the License.
  // You may obtain a copy of the License at
  //
  //  http://www.apache.org/licenses/LICENSE-2.0
  //
  // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
  // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
  // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
  // MERCHANTABLITY OR NON-INFRINGEMENT.
  // See the Apache 2 License for the specific language governing permissions and
  // limitations under the License.
  
  
  #include "base/kaldi-common.h"
  #include "util/common-utils.h"
  #include "sgmm2/am-sgmm2.h"
  #include "hmm/transition-model.h"
  
  int main(int argc, char *argv[]) {
    try {
      using namespace kaldi;
      const char *usage =
          "Precompute Gaussian indices for SGMM training "
          "Usage: sgmm2-gselect [options] <model-in> <feature-rspecifier> <gselect-wspecifier>
  "
          "e.g.: sgmm2-gselect 1.sgmm \"ark:feature-command |\" ark:1.gs
  "
          "Note: you can do the same thing by combining the programs sgmm2-write-ubm, fgmm-global-to-gmm,
  "
          "gmm-gselect and fgmm-gselect
  ";
  
      ParseOptions po(usage);
      kaldi::Sgmm2GselectConfig sgmm_opts;
      std::string preselect_rspecifier;
      std::string likelihood_wspecifier;
      po.Register("write-likes", &likelihood_wspecifier, "Wspecifier for likelihoods per "
                  "utterance");
      sgmm_opts.Register(&po);
      po.Read(argc, argv);
  
      if (po.NumArgs() != 3) {
        po.PrintUsage();
        exit(1);
      }
  
      std::string model_filename = po.GetArg(1),
          feature_rspecifier = po.GetArg(2),
          gselect_wspecifier = po.GetArg(3);
  
      using namespace kaldi;
      typedef kaldi::int32 int32;
  
      AmSgmm2 am_sgmm;
      {
        bool binary;
        Input ki(model_filename, &binary);
        TransitionModel trans_model;
        trans_model.Read(ki.Stream(), binary);
        am_sgmm.Read(ki.Stream(), binary);
      }
  
      double tot_like = 0.0;
      kaldi::int64 tot_t = 0;
  
      SequentialBaseFloatMatrixReader feature_reader(feature_rspecifier);
      Int32VectorVectorWriter gselect_writer(gselect_wspecifier);
      BaseFloatWriter likelihood_writer(likelihood_wspecifier);
  
      int32 num_done = 0, num_err = 0;
      for (; !feature_reader.Done(); feature_reader.Next()) {
        int32 tot_t_this_file = 0; double tot_like_this_file = 0;
        std::string utt = feature_reader.Key();
        const Matrix<BaseFloat> &mat = feature_reader.Value();
        std::vector<std::vector<int32> > gselect_vec(mat.NumRows());
        tot_t_this_file += mat.NumRows();
        for (int32 i = 0; i < mat.NumRows(); i++)
          tot_like_this_file += am_sgmm.GaussianSelection(sgmm_opts, mat.Row(i), &(gselect_vec[i]));
  
        gselect_writer.Write(utt, gselect_vec);
        if (num_done % 10 == 0)
          KALDI_LOG << "For " << num_done << "'th file, average UBM likelihood over "
                    << tot_t_this_file << " frames is "
                    << (tot_like_this_file/tot_t_this_file);
        tot_t += tot_t_this_file;
        tot_like += tot_like_this_file;
  
        if(likelihood_wspecifier != "")
          likelihood_writer.Write(utt, tot_like_this_file);
        num_done++;
      }
  
      KALDI_LOG << "Done " << num_done << " files, " << num_err
                << " with errors, average UBM log-likelihood is "
                << (tot_like/tot_t) << " over " << tot_t << " frames.";
  
  
      if (num_done != 0) return 0;
      else return 1;
    } catch(const std::exception &e) {
      std::cerr << e.what();
      return -1;
    }
  }