Blame view
src/sgmm2bin/sgmm2-gselect.cc
3.75 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 |
// sgmm2bin/sgmm2-gselect.cc // Copyright 2009-2012 Saarland University Microsoft Corporation // Johns Hopkins University (author: Daniel Povey) // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #include "base/kaldi-common.h" #include "util/common-utils.h" #include "sgmm2/am-sgmm2.h" #include "hmm/transition-model.h" int main(int argc, char *argv[]) { try { using namespace kaldi; const char *usage = "Precompute Gaussian indices for SGMM training " "Usage: sgmm2-gselect [options] <model-in> <feature-rspecifier> <gselect-wspecifier> " "e.g.: sgmm2-gselect 1.sgmm \"ark:feature-command |\" ark:1.gs " "Note: you can do the same thing by combining the programs sgmm2-write-ubm, fgmm-global-to-gmm, " "gmm-gselect and fgmm-gselect "; ParseOptions po(usage); kaldi::Sgmm2GselectConfig sgmm_opts; std::string preselect_rspecifier; std::string likelihood_wspecifier; po.Register("write-likes", &likelihood_wspecifier, "Wspecifier for likelihoods per " "utterance"); sgmm_opts.Register(&po); po.Read(argc, argv); if (po.NumArgs() != 3) { po.PrintUsage(); exit(1); } std::string model_filename = po.GetArg(1), feature_rspecifier = po.GetArg(2), gselect_wspecifier = po.GetArg(3); using namespace kaldi; typedef kaldi::int32 int32; AmSgmm2 am_sgmm; { bool binary; Input ki(model_filename, &binary); TransitionModel trans_model; trans_model.Read(ki.Stream(), binary); am_sgmm.Read(ki.Stream(), binary); } double tot_like = 0.0; kaldi::int64 tot_t = 0; SequentialBaseFloatMatrixReader feature_reader(feature_rspecifier); Int32VectorVectorWriter gselect_writer(gselect_wspecifier); BaseFloatWriter likelihood_writer(likelihood_wspecifier); int32 num_done = 0, num_err = 0; for (; !feature_reader.Done(); feature_reader.Next()) { int32 tot_t_this_file = 0; double tot_like_this_file = 0; std::string utt = feature_reader.Key(); const Matrix<BaseFloat> &mat = feature_reader.Value(); std::vector<std::vector<int32> > gselect_vec(mat.NumRows()); tot_t_this_file += mat.NumRows(); for (int32 i = 0; i < mat.NumRows(); i++) tot_like_this_file += am_sgmm.GaussianSelection(sgmm_opts, mat.Row(i), &(gselect_vec[i])); gselect_writer.Write(utt, gselect_vec); if (num_done % 10 == 0) KALDI_LOG << "For " << num_done << "'th file, average UBM likelihood over " << tot_t_this_file << " frames is " << (tot_like_this_file/tot_t_this_file); tot_t += tot_t_this_file; tot_like += tot_like_this_file; if(likelihood_wspecifier != "") likelihood_writer.Write(utt, tot_like_this_file); num_done++; } KALDI_LOG << "Done " << num_done << " files, " << num_err << " with errors, average UBM log-likelihood is " << (tot_like/tot_t) << " over " << tot_t << " frames."; if (num_done != 0) return 0; else return 1; } catch(const std::exception &e) { std::cerr << e.what(); return -1; } } |