Blame view

src/sgmm2bin/sgmm2-latgen-faster.cc 10.8 KB
8dcb6dfcb   Yannick Estève   first commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
  // sgmm2bin/sgmm2-latgen-faster.cc
  
  // Copyright 2009-2012  Saarland University;  Microsoft Corporation;
  //                      Johns Hopkins University (author: Daniel Povey)
  //                2014  Guoguo Chen
  
  // See ../../COPYING for clarification regarding multiple authors
  //
  // Licensed under the Apache License, Version 2.0 (the "License");
  // you may not use this file except in compliance with the License.
  // You may obtain a copy of the License at
  //
  //  http://www.apache.org/licenses/LICENSE-2.0
  //
  // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
  // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
  // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
  // MERCHANTABLITY OR NON-INFRINGEMENT.
  // See the Apache 2 License for the specific language governing permissions and
  // limitations under the License.
  
  #include <string>
  using std::string;
  
  #include "base/kaldi-common.h"
  #include "util/common-utils.h"
  #include "sgmm2/am-sgmm2.h"
  #include "hmm/transition-model.h"
  #include "fstext/fstext-lib.h"
  #include "decoder/decoder-wrappers.h"
  #include "sgmm2/decodable-am-sgmm2.h"
  #include "base/timer.h"
  
  namespace kaldi {
  
  // the reference arguments at the beginning are not const as the style guide
  // requires, but are best viewed as inputs.
  bool ProcessUtterance(LatticeFasterDecoder &decoder,
                        const AmSgmm2 &am_sgmm,
                        const TransitionModel &trans_model,
                        double log_prune,
                        double acoustic_scale,
                        const Matrix<BaseFloat> &features,
                        RandomAccessInt32VectorVectorReader &gselect_reader,
                        RandomAccessBaseFloatVectorReaderMapped &spkvecs_reader,
                        const fst::SymbolTable *word_syms,
                        const std::string &utt,
                        bool determinize,
                        bool allow_partial,
                        Int32VectorWriter *alignments_writer,
                        Int32VectorWriter *words_writer,
                        CompactLatticeWriter *compact_lattice_writer,
                        LatticeWriter *lattice_writer,
                        double *like_ptr) { // puts utterance's like in like_ptr on success.
    using fst::Fst;
  
    Sgmm2PerSpkDerivedVars spk_vars;
    if (spkvecs_reader.IsOpen()) {
      if (spkvecs_reader.HasKey(utt)) {
        spk_vars.SetSpeakerVector(spkvecs_reader.Value(utt));
        am_sgmm.ComputePerSpkDerivedVars(&spk_vars);
      } else {
        KALDI_WARN << "Cannot find speaker vector for " << utt << ", not decoding this utterance";
        return false; // We could use zero, but probably the user would want to know about this
        // (this would normally be a script error or some kind of failure).
      }
    }
    if (!gselect_reader.HasKey(utt) ||
        gselect_reader.Value(utt).size() != features.NumRows()) {
      KALDI_WARN << "No Gaussian-selection info available for utterance "
                 << utt << " (or wrong size)";
    }
  
    const std::vector<std::vector<int32> > &gselect =
        gselect_reader.Value(utt);
    
    DecodableAmSgmm2Scaled sgmm_decodable(am_sgmm, trans_model, features, gselect,
                                          log_prune, acoustic_scale, &spk_vars);
  
    return DecodeUtteranceLatticeFaster(
        decoder, sgmm_decodable, trans_model, word_syms, utt, acoustic_scale,
        determinize, allow_partial, alignments_writer, words_writer,
        compact_lattice_writer, lattice_writer, like_ptr);
  }
  
  } // end namespace kaldi
  
  int main(int argc, char *argv[]) {
    try {
      using namespace kaldi;
      typedef kaldi::int32 int32;
      using fst::SymbolTable;
      using fst::Fst;
      using fst::StdArc;
  
      const char *usage =
          "Decode features using SGMM-based model.
  "
          "Usage:  sgmm2-latgen-faster [options] <model-in> (<fst-in>|<fsts-rspecifier>) "
          "<features-rspecifier> <lattices-wspecifier> [<words-wspecifier> [<alignments-wspecifier>] ]
  ";
      ParseOptions po(usage);
      BaseFloat acoustic_scale = 0.1;
      bool allow_partial = false;
      BaseFloat log_prune = 5.0;
      string word_syms_filename, gselect_rspecifier, spkvecs_rspecifier,
          utt2spk_rspecifier;
  
      LatticeFasterDecoderConfig decoder_opts;
      decoder_opts.Register(&po);    
  
      po.Register("acoustic-scale", &acoustic_scale,
          "Scaling factor for acoustic likelihoods");
      po.Register("log-prune", &log_prune,
                  "Pruning beam used to reduce number of exp() evaluations.");
      po.Register("word-symbol-table", &word_syms_filename,
          "Symbol table for words [for debug output]");
      po.Register("allow-partial", &allow_partial,
                  "Produce output even when final state was not reached");
      po.Register("gselect", &gselect_rspecifier,
                  "rspecifier for precomputed per-frame Gaussian indices.");
      po.Register("spk-vecs", &spkvecs_rspecifier,
                  "rspecifier for speaker vectors");
      po.Register("utt2spk", &utt2spk_rspecifier,
                  "rspecifier for utterance to speaker map");
      po.Read(argc, argv);
  
      if (po.NumArgs() < 4 || po.NumArgs() > 6) {
        po.PrintUsage();
        exit(1);
      }
  
      if (gselect_rspecifier == "")
        KALDI_ERR << "--gselect option is required.";
  
      std::string model_in_filename = po.GetArg(1),
          fst_in_str = po.GetArg(2),
          feature_rspecifier = po.GetArg(3),
          lattice_wspecifier = po.GetArg(4),
          words_wspecifier = po.GetOptArg(5),
          alignment_wspecifier = po.GetOptArg(6);
  
      TransitionModel trans_model;
      kaldi::AmSgmm2 am_sgmm;
      {
        bool binary;
        Input ki(model_in_filename, &binary);
        trans_model.Read(ki.Stream(), binary);
        am_sgmm.Read(ki.Stream(), binary);
      }
  
      CompactLatticeWriter compact_lattice_writer;
      LatticeWriter lattice_writer;
      bool determinize = decoder_opts.determinize_lattice;    
      if (! (determinize ? compact_lattice_writer.Open(lattice_wspecifier)
             : lattice_writer.Open(lattice_wspecifier)))
        KALDI_ERR << "Could not open table for writing lattices: "
                   << lattice_wspecifier;
      
      Int32VectorWriter words_writer(words_wspecifier);
  
      Int32VectorWriter alignment_writer(alignment_wspecifier);
  
      fst::SymbolTable *word_syms = NULL;
      if (word_syms_filename != "") 
        if (!(word_syms = fst::SymbolTable::ReadText(word_syms_filename)))
          KALDI_ERR << "Could not read symbol table from file "
                     << word_syms_filename;
  
      RandomAccessInt32VectorVectorReader gselect_reader(gselect_rspecifier);
      RandomAccessBaseFloatVectorReaderMapped spkvecs_reader(spkvecs_rspecifier,
                                                             utt2spk_rspecifier);
  
      BaseFloat tot_like = 0.0;
      kaldi::int64 frame_count = 0;
      int num_success = 0, num_err = 0;
  
      Timer timer;
          
      if (ClassifyRspecifier(fst_in_str, NULL, NULL) == kNoRspecifier) { // a single FST.
        SequentialBaseFloatMatrixReader feature_reader(feature_rspecifier);
        // It's important that we initialize decode_fst after feature_reader, as it
        // can prevent crashes on systems installed without enough virtual memory.
        // It has to do with what happens on UNIX systems if you call fork() on a
        // large process: the page-table entries are duplicated, which requires a
        // lot of virtual memory.
        Fst<StdArc> *decode_fst = fst::ReadFstKaldiGeneric(fst_in_str);
        timer.Reset(); // exclude graph loading time.
        
        {
          LatticeFasterDecoder decoder(*decode_fst, decoder_opts);
      
          const std::vector<std::vector<int32> > empty_gselect;
  
          for (; !feature_reader.Done(); feature_reader.Next()) {
            string utt = feature_reader.Key();
            const Matrix<BaseFloat> &features(feature_reader.Value());
            if (features.NumRows() == 0) {
              KALDI_WARN << "Zero-length utterance: " << utt;
              num_err++;
              continue;
            }
            double like;
            if (ProcessUtterance(decoder, am_sgmm, trans_model, log_prune, acoustic_scale,
                                 features, gselect_reader, spkvecs_reader, word_syms,
                                 utt, determinize, allow_partial,
                                 &alignment_writer, &words_writer, &compact_lattice_writer,
                                 &lattice_writer, &like)) {
              tot_like += like;
              frame_count += features.NumRows();
              KALDI_LOG << "Log-like per frame for utterance " << utt << " is "
                        << (like / features.NumRows()) << " over "
                        << features.NumRows() << " frames.";
              num_success++;
            } else { num_err++; }
          }
        }
        delete decode_fst; // only safe to do this after decoder goes out of scope.
      } else { // We have different FSTs for different utterances.
        SequentialTableReader<fst::VectorFstHolder> fst_reader(fst_in_str);
        RandomAccessBaseFloatMatrixReader feature_reader(feature_rspecifier);          
        for (; !fst_reader.Done(); fst_reader.Next()) {
          std::string utt = fst_reader.Key();
          if (!feature_reader.HasKey(utt)) {
            KALDI_WARN << "Not decoding utterance " << utt
                       << " because no features available.";
            num_err++;
            continue;
          }
          const Matrix<BaseFloat> &features = feature_reader.Value(utt);
          if (features.NumRows() == 0) {
            KALDI_WARN << "Zero-length utterance: " << utt;
            num_err++;
            continue;
          }
          LatticeFasterDecoder decoder(fst_reader.Value(), decoder_opts);
          double like;
  
          if (ProcessUtterance(decoder, am_sgmm, trans_model, log_prune, acoustic_scale,
                               features, gselect_reader, spkvecs_reader, word_syms,
                               utt, determinize, allow_partial,
                               &alignment_writer, &words_writer, &compact_lattice_writer,
                               &lattice_writer, &like)) {
            tot_like += like;
            frame_count += features.NumRows();
            KALDI_LOG << "Log-like per frame for utterance " << utt << " is "
                      << (like / features.NumRows()) << " over "
                      << features.NumRows() << " frames.";
            num_success++;
          } else { num_err++; }
        }
      }
      double elapsed = timer.Elapsed();
      KALDI_LOG << "Time taken [excluding initialization] "<< elapsed
                << "s: real-time factor assuming 100 frames/sec is "
                << (elapsed*100.0/frame_count);
      KALDI_LOG << "Done " << num_success << " utterances, failed for "
                << num_err;
      KALDI_LOG << "Overall log-likelihood per frame = " << (tot_like/frame_count)
                << " over " << frame_count << " frames.";
  
      delete word_syms;
      return (num_success != 0 ? 0 : 1);
    } catch(const std::exception &e) {
      std::cerr << e.what();
      return -1;
    }
  }