Blame view

src/sgmm2bin/sgmm2-project.cc 3.94 KB
8dcb6dfcb   Yannick Estève   first commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
  // sgmm2bin/sgmm2-project.cc
  
  // Copyright 2012    Johns Hopkins University (Author: Daniel Povey)
  
  // See ../../COPYING for clarification regarding multiple authors
  //
  // Licensed under the Apache License, Version 2.0 (the "License");
  // you may not use this file except in compliance with the License.
  // You may obtain a copy of the License at
  //
  //  http://www.apache.org/licenses/LICENSE-2.0
  //
  // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
  // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
  // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
  // MERCHANTABLITY OR NON-INFRINGEMENT.
  // See the Apache 2 License for the specific language governing permissions and
  // limitations under the License.
  
  
  #include "base/kaldi-common.h"
  #include "util/common-utils.h"
  #include "util/kaldi-thread.h"
  #include "hmm/transition-model.h"
  #include "sgmm2/am-sgmm2-project.h"
  
  int main(int argc, char *argv[]) {
    try {
      using namespace kaldi;
      typedef kaldi::int32 int32;
      const char *usage =
          "Compute SGMM model projection that only models a part of a pre-LDA space.
  "
          "Used in predictive SGMMs.  Takes as input an LDA+MLLT transform,
  "
          "and outputs a transform from the pre-LDA+MLLT space to the space that
  "
          "we want to model
  "
          "Usage: sgmm2-project [options] <model-in> <lda-mllt-mat-in> <model-out> <new-projection-out>
  "
          "e.g.: sgmm2-project --start-dim=0 --end-dim=52 final.mdl final.inv_full_mat final_proj1.mdl proj1.mat
  ";
      
      std::string write_flags_str = "gsnu";
  
      bool binary_write = false;
      int32 start_dim = 0;
      int32 end_dim = 0;
  
      ParseOptions po(usage);
      po.Register("binary", &binary_write, "Write output in binary mode");
      po.Register("start-dim", &start_dim, "Starting dimension to keep in "
                  "pre-LDA-MLLT space.");
      po.Register("end-dim", &end_dim, "Ending dimension to keep in "
                  "pre-LDA-MLLT space (equals last retained dimension plus one)");
  
      po.Read(argc, argv);
      if (po.NumArgs() != 4) {
        po.PrintUsage();
        exit(1);
      }
      std::string model_rxfilename = po.GetArg(1),
          lda_mllt_rxfilename = po.GetArg(2),
          model_wxfilename = po.GetArg(3),
          proj_wxfilename = po.GetArg(4);
  
      kaldi::SgmmWriteFlagsType write_flags =
          StringToSgmmWriteFlags(write_flags_str);
      
      AmSgmm2 am_sgmm;
      TransitionModel trans_model;
      {
        bool binary;
        Input ki(model_rxfilename, &binary);
        trans_model.Read(ki.Stream(), binary);
        am_sgmm.Read(ki.Stream(), binary);
      }
  
  
      Matrix<BaseFloat> lda_mllt_mat;
      ReadKaldiObject(lda_mllt_rxfilename, &lda_mllt_mat);
  
      // Need the full LDA+MLLT matrix, including the extra rows.
      // See featbin/extend-transform.cc
      KALDI_ASSERT(lda_mllt_mat.NumRows() == lda_mllt_mat.NumCols());
  
      Matrix<BaseFloat> inv_lda_mllt_mat(lda_mllt_mat);
      inv_lda_mllt_mat.Invert();
  
      Matrix<BaseFloat> projection;
      Sgmm2Project sgmm_project;
      sgmm_project.ComputeProjection(am_sgmm, inv_lda_mllt_mat, start_dim, end_dim,
                                     &projection);
  
      Matrix<BaseFloat> total_projection(projection.NumRows(), projection.NumCols());
      total_projection.AddMatMat(1.0, projection, kNoTrans,
                                 inv_lda_mllt_mat, kNoTrans, 0.0);
      
      sgmm_project.ApplyProjection(total_projection, &am_sgmm);
      
      am_sgmm.ComputeDerivedVars(); // recompute normalizers, and possibly
      // weights.
      
      {
        Output ko(model_wxfilename, binary_write);
        trans_model.Write(ko.Stream(), binary_write);
        am_sgmm.Write(ko.Stream(), binary_write, write_flags);
      }
      KALDI_LOG << "Wrote model to " << model_wxfilename;
  
      WriteKaldiObject(projection, proj_wxfilename, binary_write);
      KALDI_LOG << "Wrote projection matrix to " << proj_wxfilename;
      
      return 0;
    } catch(const std::exception &e) {
      std::cerr << e.what();
      return -1;
    }
  }