Blame view
src/transform/cmvn.h
3.04 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 |
// transform/cmvn.h // Copyright 2009-2013 Microsoft Corporation // Johns Hopkins University (author: Daniel Povey) // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #ifndef KALDI_TRANSFORM_CMVN_H_ #define KALDI_TRANSFORM_CMVN_H_ #include "base/kaldi-common.h" #include "matrix/matrix-lib.h" namespace kaldi { /// This function initializes the matrix to dimension 2 by (dim+1); /// 1st "dim" elements of 1st row are mean stats, 1st "dim" elements /// of 2nd row are var stats, last element of 1st row is count, /// last element of 2nd row is zero. void InitCmvnStats(int32 dim, Matrix<double> *stats); /// Accumulation from a single frame (weighted). void AccCmvnStats(const VectorBase<BaseFloat> &feat, BaseFloat weight, MatrixBase<double> *stats); /// Accumulation from a feature file (possibly weighted-- useful in excluding silence). void AccCmvnStats(const MatrixBase<BaseFloat> &feats, const VectorBase<BaseFloat> *weights, // or NULL MatrixBase<double> *stats); /// Apply cepstral mean and variance normalization to a matrix of features. /// If norm_vars == true, expects stats to be of dimension 2 by (dim+1), but /// if norm_vars == false, will accept stats of dimension 1 by (dim+1); these /// are produced by the balanced-cmvn code when it computes an offset and /// represents it as "fake stats". void ApplyCmvn(const MatrixBase<double> &stats, bool norm_vars, MatrixBase<BaseFloat> *feats); /// This is as ApplyCmvn, but does so in the reverse sense, i.e. applies a transform /// that would take zero-mean, unit-variance input and turn it into output with the /// stats of "stats". This can be useful if you trained without CMVN but later want /// to correct a mismatch, so you would first apply CMVN and then do the "reverse" /// CMVN with the summed stats of your training data. void ApplyCmvnReverse(const MatrixBase<double> &stats, bool norm_vars, MatrixBase<BaseFloat> *feats); /// Modify the stats so that for some dimensions (specified in "dims"), we /// replace them with "fake" stats that have zero mean and unit variance; this /// is done to disable CMVN for those dimensions. void FakeStatsForSomeDims(const std::vector<int32> &dims, MatrixBase<double> *stats); } // namespace kaldi #endif // KALDI_TRANSFORM_CMVN_H_ |