Blame view

src/transform/compressed-transform-stats.cc 6.43 KB
8dcb6dfcb   Yannick Estève   first commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
  // transform/compressed-transform-stats.cc
  
  // Copyright 2012  Johns Hopkins University (author:  Daniel Povey)
  
  // See ../../COPYING for clarification regarding multiple authors
  //
  // Licensed under the Apache License, Version 2.0 (the "License");
  // you may not use this file except in compliance with the License.
  // You may obtain a copy of the License at
  //
  //  http://www.apache.org/licenses/LICENSE-2.0
  //
  // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
  // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
  // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
  // MERCHANTABLITY OR NON-INFRINGEMENT.
  // See the Apache 2 License for the specific language governing permissions and
  // limitations under the License.
  
  #include <utility>
  #include <vector>
  using std::vector;
  
  #include "transform/compressed-transform-stats.h"
  
  namespace kaldi {
  
  void CompressedAffineXformStats::CopyFromAffineXformStats(
      const AffineXformStats &input) {
    int32 dim = input.Dim();
    beta_ = input.beta_;
    if (beta_ == 0.0) { // empty; no stats.
      K_.Resize(dim, dim+1); // Will set to zero.
      // This stores the dimension.  Inefficient but this shouldn't happen often.
      Matrix<float> empty;
      G_.CopyFromMat(empty); // Sets G empty.
      return;
    }
    KALDI_ASSERT(input.G_.size() == dim && input.K_.NumCols() == dim+1
                 && input.K_.NumRows() == dim && input.G_[0].NumRows() == dim+1);
    // OK, we have valid, nonempty stats.
    // We first slightly change the format of G.
    Matrix<double> Gtmp(dim, 1 + (((dim+1)*(dim+2))/2));
    // Gtmp will be compressed into G_.  The first element of each
    // row of Gtmp is the trace of the corresponding G[i], divided
    // by (beta * dim).  [this division is so we expect it to be
    // approximately 1, to keep things in a good range so they
    // can be more easily compressed.]  The next (((dim+1)*(dim+2))/2))
    // elements are the linearized form of the symmetric (d+1) by (d+1) matrix
    // input.G_[i], normalized appropriately using that trace.
  
    Matrix<double> K_corrected(input.K_); // This K_corrected matrix is a version of the
    // K_ matrix that we will correct to ensure that the derivative of the
    // objective function around the default matrix stays the same after
    // compression.
  
    SpMatrix<double> Gi_tmp(dim+1);
    for (int32 i = 0; i < dim; i++) {
      SubVector<double> this_row(Gtmp, i);
      PrepareOneG(input.G_[i], beta_, &this_row);
      ExtractOneG(this_row, beta_, &Gi_tmp);
  
      // At this stage we use the difference betwen Gi and Gi_tmp to
      // make a correction to K_.
      Vector<double> old_g_row(dim+1), new_g_row(dim+1);
      old_g_row.CopyRowFromSp(input.G_[i], i); // i'th row of old G_i.
      new_g_row.CopyRowFromSp(Gi_tmp, i); // i'th row of compressed+reconstructed G_i.
      // The auxiliary function for the i'th row of the transform, v_i, is as follows
      // [ignoring the determinant], where/ k_i is the i'th row of K:
      //  v_i . k_i - 0.5 v_i^T G_i u_i.
      // Let u_i be the unit vector in the i'th dimension.  This is the "default" value
      // of v_i.  The derivative of the auxf w.r.t. v_i, taken around this point, is:
      // k_i - G_i u_i
      // which is the same as k_i minus the i'th row (or column) of G_i
      // we want the derivative to be unchanged after compression:
      // new_ki - new_G_i u_i = old_ki - old_G_i u_i
      // new_ki = old_ki - old_G_i u_i + new_G_i u_i.
      // new_ki = old_ki - (i'th row of old G_i) + (i'th row of new G_i).
      
      SubVector<double> Ki(K_corrected, i);
      Ki.AddVec(-1.0, old_g_row);
      Ki.AddVec(+1.0, new_g_row);
    }
    K_.Resize(dim, dim+1);
    K_.CopyFromMat(K_corrected);
    G_.CopyFromMat(Gtmp);
  }
  
  void CompressedAffineXformStats::CopyToAffineXformStats(
      AffineXformStats *output) const {
    int32 dim = K_.NumRows();
    if (dim == 0) {
      output->Init(0, 0);
      return;
    }
    if (output->Dim() != dim || output->G_.size() != dim || beta_ == 0.0)
      output->Init(dim, dim);
    if (beta_ == 0.0) return; // Init() will have cleared it.
    output->beta_ = beta_;
    output->K_.CopyFromMat(K_);
    Matrix<double> Gtmp(G_.NumRows(), G_.NumCols());  // CopyToMat no longer
    // resizes, we have to provide correctly-sized matrix
    G_.CopyToMat(&Gtmp);
    for (int32 i = 0; i < dim; i++) {
      SubVector<double> this_row(Gtmp, i);
      ExtractOneG(this_row, beta_, &(output->G_[i]));
    }
  }
  
  void CompressedAffineXformStats::Write(std::ostream &os, bool binary) const {
    WriteToken(os, binary, "<CompressedAffineXformStats>");
    WriteBasicType(os, binary, beta_);
    K_.Write(os, binary);
    G_.Write(os, binary);
    WriteToken(os, binary, "</CompressedAffineXformStats>");
  }
  
  void CompressedAffineXformStats::Read(std::istream &is, bool binary) {
    ExpectToken(is, binary, "<CompressedAffineXformStats>");
    ReadBasicType(is, binary, &beta_);
    K_.Read(is, binary);
    G_.Read(is, binary);
    ExpectToken(is, binary, "</CompressedAffineXformStats>");
  }
  
  // Convert one G matrix into linearized, normalized form ready
  // for compression.  A static function.
  void CompressedAffineXformStats::PrepareOneG(const SpMatrix<double> &Gi,
                                               double beta,
                                               SubVector<double> *linearized) {
    KALDI_ASSERT(beta != 0.0);
    int32 dim = Gi.NumRows() - 1;
    double raw_trace = Gi.Trace();
    double norm_trace = (raw_trace / (beta * dim));
    (*linearized)(0) = norm_trace; // should be around 1.
    SubVector<double> linearized_matrix((*linearized), 1, ((dim+1)*(dim+2))/2);
    TpMatrix<double> C(dim+1);
    C.Cholesky(Gi); // Get the Cholesky factor: after we compress and uncompress
    // this and re-create Gi, it's bound to be +ve semidefinite, which is a Good Thing.
    C.Scale(sqrt(dim / raw_trace)); // This is the scaling that is equivalent
    // to scaling Gi by dim / raw_trace, which would make the diagonals
    // of Gi average to 1.  We can reverse this when we decompress.
    linearized_matrix.CopyFromPacked(C);  
  }
  
  // Reverse the process of PrepareOneG.  A static function.
  void CompressedAffineXformStats::ExtractOneG(const SubVector<double> &linearized,
                                               double beta,
                                               SpMatrix<double> *Gi) {
    int32 dim = Gi->NumRows() - 1;
    KALDI_ASSERT(dim > 0);
    double norm_trace = linearized(0);
    double raw_trace = norm_trace * beta * dim;
    TpMatrix<double> C(dim+1);
    C.CopyFromVec(linearized.Range(1, ((dim+1)*(dim+2))/2));
    Gi->AddTp2(raw_trace / dim, C, kNoTrans, 0.0);
  }
  
  
  
  } // namespace kaldi