Blame view
src/transform/compressed-transform-stats.cc
6.43 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 |
// transform/compressed-transform-stats.cc // Copyright 2012 Johns Hopkins University (author: Daniel Povey) // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #include <utility> #include <vector> using std::vector; #include "transform/compressed-transform-stats.h" namespace kaldi { void CompressedAffineXformStats::CopyFromAffineXformStats( const AffineXformStats &input) { int32 dim = input.Dim(); beta_ = input.beta_; if (beta_ == 0.0) { // empty; no stats. K_.Resize(dim, dim+1); // Will set to zero. // This stores the dimension. Inefficient but this shouldn't happen often. Matrix<float> empty; G_.CopyFromMat(empty); // Sets G empty. return; } KALDI_ASSERT(input.G_.size() == dim && input.K_.NumCols() == dim+1 && input.K_.NumRows() == dim && input.G_[0].NumRows() == dim+1); // OK, we have valid, nonempty stats. // We first slightly change the format of G. Matrix<double> Gtmp(dim, 1 + (((dim+1)*(dim+2))/2)); // Gtmp will be compressed into G_. The first element of each // row of Gtmp is the trace of the corresponding G[i], divided // by (beta * dim). [this division is so we expect it to be // approximately 1, to keep things in a good range so they // can be more easily compressed.] The next (((dim+1)*(dim+2))/2)) // elements are the linearized form of the symmetric (d+1) by (d+1) matrix // input.G_[i], normalized appropriately using that trace. Matrix<double> K_corrected(input.K_); // This K_corrected matrix is a version of the // K_ matrix that we will correct to ensure that the derivative of the // objective function around the default matrix stays the same after // compression. SpMatrix<double> Gi_tmp(dim+1); for (int32 i = 0; i < dim; i++) { SubVector<double> this_row(Gtmp, i); PrepareOneG(input.G_[i], beta_, &this_row); ExtractOneG(this_row, beta_, &Gi_tmp); // At this stage we use the difference betwen Gi and Gi_tmp to // make a correction to K_. Vector<double> old_g_row(dim+1), new_g_row(dim+1); old_g_row.CopyRowFromSp(input.G_[i], i); // i'th row of old G_i. new_g_row.CopyRowFromSp(Gi_tmp, i); // i'th row of compressed+reconstructed G_i. // The auxiliary function for the i'th row of the transform, v_i, is as follows // [ignoring the determinant], where/ k_i is the i'th row of K: // v_i . k_i - 0.5 v_i^T G_i u_i. // Let u_i be the unit vector in the i'th dimension. This is the "default" value // of v_i. The derivative of the auxf w.r.t. v_i, taken around this point, is: // k_i - G_i u_i // which is the same as k_i minus the i'th row (or column) of G_i // we want the derivative to be unchanged after compression: // new_ki - new_G_i u_i = old_ki - old_G_i u_i // new_ki = old_ki - old_G_i u_i + new_G_i u_i. // new_ki = old_ki - (i'th row of old G_i) + (i'th row of new G_i). SubVector<double> Ki(K_corrected, i); Ki.AddVec(-1.0, old_g_row); Ki.AddVec(+1.0, new_g_row); } K_.Resize(dim, dim+1); K_.CopyFromMat(K_corrected); G_.CopyFromMat(Gtmp); } void CompressedAffineXformStats::CopyToAffineXformStats( AffineXformStats *output) const { int32 dim = K_.NumRows(); if (dim == 0) { output->Init(0, 0); return; } if (output->Dim() != dim || output->G_.size() != dim || beta_ == 0.0) output->Init(dim, dim); if (beta_ == 0.0) return; // Init() will have cleared it. output->beta_ = beta_; output->K_.CopyFromMat(K_); Matrix<double> Gtmp(G_.NumRows(), G_.NumCols()); // CopyToMat no longer // resizes, we have to provide correctly-sized matrix G_.CopyToMat(&Gtmp); for (int32 i = 0; i < dim; i++) { SubVector<double> this_row(Gtmp, i); ExtractOneG(this_row, beta_, &(output->G_[i])); } } void CompressedAffineXformStats::Write(std::ostream &os, bool binary) const { WriteToken(os, binary, "<CompressedAffineXformStats>"); WriteBasicType(os, binary, beta_); K_.Write(os, binary); G_.Write(os, binary); WriteToken(os, binary, "</CompressedAffineXformStats>"); } void CompressedAffineXformStats::Read(std::istream &is, bool binary) { ExpectToken(is, binary, "<CompressedAffineXformStats>"); ReadBasicType(is, binary, &beta_); K_.Read(is, binary); G_.Read(is, binary); ExpectToken(is, binary, "</CompressedAffineXformStats>"); } // Convert one G matrix into linearized, normalized form ready // for compression. A static function. void CompressedAffineXformStats::PrepareOneG(const SpMatrix<double> &Gi, double beta, SubVector<double> *linearized) { KALDI_ASSERT(beta != 0.0); int32 dim = Gi.NumRows() - 1; double raw_trace = Gi.Trace(); double norm_trace = (raw_trace / (beta * dim)); (*linearized)(0) = norm_trace; // should be around 1. SubVector<double> linearized_matrix((*linearized), 1, ((dim+1)*(dim+2))/2); TpMatrix<double> C(dim+1); C.Cholesky(Gi); // Get the Cholesky factor: after we compress and uncompress // this and re-create Gi, it's bound to be +ve semidefinite, which is a Good Thing. C.Scale(sqrt(dim / raw_trace)); // This is the scaling that is equivalent // to scaling Gi by dim / raw_trace, which would make the diagonals // of Gi average to 1. We can reverse this when we decompress. linearized_matrix.CopyFromPacked(C); } // Reverse the process of PrepareOneG. A static function. void CompressedAffineXformStats::ExtractOneG(const SubVector<double> &linearized, double beta, SpMatrix<double> *Gi) { int32 dim = Gi->NumRows() - 1; KALDI_ASSERT(dim > 0); double norm_trace = linearized(0); double raw_trace = norm_trace * beta * dim; TpMatrix<double> C(dim+1); C.CopyFromVec(linearized.Range(1, ((dim+1)*(dim+2))/2)); Gi->AddTp2(raw_trace / dim, C, kNoTrans, 0.0); } } // namespace kaldi |