Blame view

src/transform/fmllr-diag-gmm.h 11.4 KB
8dcb6dfcb   Yannick Estève   first commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
  // transform/fmllr-diag-gmm.h
  
  // Copyright 2009-2011  Microsoft Corporation;  Saarland University
  //                2013  Johns Hopkins University (author: Daniel Povey)
  
  // See ../../COPYING for clarification regarding multiple authors
  //
  // Licensed under the Apache License, Version 2.0 (the "License");
  // you may not use this file except in compliance with the License.
  // You may obtain a copy of the License at
  //
  //  http://www.apache.org/licenses/LICENSE-2.0
  //
  // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
  // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
  // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
  // MERCHANTABLITY OR NON-INFRINGEMENT.
  // See the Apache 2 License for the specific language governing permissions and
  // limitations under the License.
  
  
  #ifndef KALDI_TRANSFORM_FMLLR_DIAG_GMM_H_
  #define KALDI_TRANSFORM_FMLLR_DIAG_GMM_H_
  
  #include <vector>
  
  #include "base/kaldi-common.h"
  #include "gmm/am-diag-gmm.h"
  #include "gmm/mle-full-gmm.h"
  #include "transform/transform-common.h"
  #include "util/kaldi-table.h"
  #include "util/kaldi-holder.h"
  
  namespace kaldi {
  
  /* This header contains routines for performing global CMLLR,
     without a regression tree (however, you can down-weight silence
     in training using the program weight-silence-post on the
     state-level posteriors).  For regression-tree CMLLR, see
     fmllr-diag-gmm.h
  */
  
  struct FmllrOptions {
    std::string update_type;  ///< "full", "diag", "offset", "none"
    BaseFloat min_count;
    int32 num_iters;
    FmllrOptions(): update_type("full"), min_count(500.0), num_iters(40) { }
    void Register(OptionsItf *opts) {
      opts->Register("fmllr-update-type", &update_type,
                     "Update type for fMLLR (\"full\"|\"diag\"|\"offset\"|\"none\")");
      opts->Register("fmllr-min-count", &min_count,
                     "Minimum count required to update fMLLR");
      opts->Register("fmllr-num-iters", &num_iters,
                     "Number of iterations in fMLLR update phase.");
    }
  };
  
  
  /// This does not work with multiple feature transforms.
  
  class FmllrDiagGmmAccs: public AffineXformStats {
   public:
    // If supplied, the "opts" will only be used to limit the
    // stats that are accumulated, to the parts we'll need in the
    // update.
    FmllrDiagGmmAccs(const FmllrOptions &opts = FmllrOptions()):
        opts_(opts) { }
    explicit FmllrDiagGmmAccs(const FmllrDiagGmmAccs &other):
        AffineXformStats(other), single_frame_stats_(other.single_frame_stats_),
        opts_(other.opts_) {}
    explicit FmllrDiagGmmAccs(int32 dim, const FmllrOptions &opts = FmllrOptions()):
        opts_(opts) { Init(dim); }
    
    // The following initializer gives us an efficient way to
    // compute these stats from full-cov Gaussian statistics
    // (accumulated from a *diagonal* model (e.g. use
    // AccumFullGmm::AccumulateFromPosteriors or
    // AccumulateFromDiag).
    FmllrDiagGmmAccs(const DiagGmm &gmm, const AccumFullGmm &fgmm_accs);
    
    void Init(size_t dim) {
      AffineXformStats::Init(dim, dim); single_frame_stats_.Init(dim);
    }
    void Read(std::istream &in, bool binary, bool add) {
        AffineXformStats::Read(in, binary, add);
        single_frame_stats_.Init(Dim());
    }
    /// Accumulate stats for a single GMM in the model; returns log likelihood.
    BaseFloat AccumulateForGmm(const DiagGmm &gmm,
                               const VectorBase<BaseFloat> &data,
                               BaseFloat weight);
  
    /// This is like AccumulateForGmm but when you have gselect
    /// (Gaussian selection) information
    BaseFloat AccumulateForGmmPreselect(const DiagGmm &gmm,
                                        const std::vector<int32> &gselect,
                                        const VectorBase<BaseFloat> &data,
                                        BaseFloat weight);
    
    /// Accumulate stats for a GMM, given supplied posteriors.
    void AccumulateFromPosteriors(const DiagGmm &gmm,
                                  const VectorBase<BaseFloat> &data,
                                  const VectorBase<BaseFloat> &posteriors);
  
    /// Accumulate stats for a GMM, given supplied posteriors.  The "posteriors"
    /// vector should be have the same size as "gselect".
    void AccumulateFromPosteriorsPreselect(
        const DiagGmm &gmm,
        const std::vector<int32> &gselect,
        const VectorBase<BaseFloat> &data,
        const VectorBase<BaseFloat> &posteriors);
  
    
    /// Update
    void Update(const FmllrOptions &opts,
                MatrixBase<BaseFloat> *fmllr_mat,
                BaseFloat *objf_impr,
                BaseFloat *count);
  
    // Note: we allow copy and assignment for this class.
  
    // Note: you can use the inherited AffineXformStats::Read 
    //       and AffineXformStats::Write methods for writing/reading
    //       of the object. It is not necessary to store the other 
    //       private variables of this class
         
   private:
    // The things below, added in 2013, relate to an optimization that lets us
    // speed up accumulation if there are multiple active pdfs per frame
    // (e.g. when accumulating from lattices), or if we don't anticipate
    // doing a "full" update.
    
    struct SingleFrameStats {
      Vector<BaseFloat> x; // dim-dimensional features.
      Vector<BaseFloat> a; // linear term in per-frame auxf; dim is model-dim.
      Vector<BaseFloat> b; // quadratic term in per-frame auxf; dim is model-dim.
      double count;
      SingleFrameStats(int32 dim = 0) { Init(dim); }
      SingleFrameStats(const SingleFrameStats &s): x(s.x), a(s.a), b(s.b),
                                                   count(s.count) {}
      void Init(int32 dim);
    };  
  
    void CommitSingleFrameStats();
  
    void InitSingleFrameStats(const VectorBase<BaseFloat> &data);
    
    bool DataHasChanged(const VectorBase<BaseFloat> &data) const; // compares it to the
    // data in single_frame_stats_, returns true if it's different.
  
    SingleFrameStats single_frame_stats_;
    
    // We only use the opts_ variable for its "update_type" data member,
    // which limits what parts of the G matrix we accumulate.
    FmllrOptions opts_;
    
  };
  
  
  // Initializes the FMLLR matrix to its default values.
  inline void InitFmllr(int32 dim,
                        Matrix<BaseFloat> *out_fmllr) {
    out_fmllr->Resize(dim, dim+1);
    out_fmllr->SetUnit();  // sets diagonal elements to one.
  }
  
  // ComputeFmllr optimizes the FMLLR matrix, controlled by the options.
  // It starts the optimization from the current value of the matrix (e.g. use
  // InitFmllr to get this).
  // Returns auxf improvement.
  BaseFloat ComputeFmllrDiagGmm(const FmllrDiagGmmAccs &accs,
                                const FmllrOptions &opts,
                                Matrix<BaseFloat> *out_fmllr,
                                BaseFloat *logdet);  // add this to likelihoods
  
  inline BaseFloat ComputeFmllrLogDet(const Matrix<BaseFloat> &fmllr_mat) {
    KALDI_ASSERT(fmllr_mat.NumRows() != 0 && fmllr_mat.NumCols() == fmllr_mat.NumRows()+1);
    SubMatrix<BaseFloat> tmp(fmllr_mat,
                             0, fmllr_mat.NumRows(),
                             0, fmllr_mat.NumRows());
    return tmp.LogDet();
  }
  
  
  /// Updates the FMLLR matrix using Mark Gales' row-by-row update.
  /// Uses full fMLLR matrix (no structure).  Returns the
  /// objective function improvement, not normalized by number of frames.
  BaseFloat ComputeFmllrMatrixDiagGmmFull(const MatrixBase<BaseFloat> &in_xform,
                                          const AffineXformStats &stats,
                                          int32 num_iters,
                                          MatrixBase<BaseFloat> *out_xform);
  
  /// This does diagonal fMLLR (i.e. only estimate an offset and scale per
  /// dimension).  The format of the output is the same as for the full case.  Of
  /// course, these statistics are unnecessarily large for this case.  Returns the
  /// objective function improvement, not normalized by number of frames.
  BaseFloat ComputeFmllrMatrixDiagGmmDiagonal(const MatrixBase<BaseFloat> &in_xform,
                                              const AffineXformStats &stats,
                                              MatrixBase<BaseFloat> *out_xform);
  // Simpler implementation I am testing.
  BaseFloat ComputeFmllrMatrixDiagGmmDiagonal2(const MatrixBase<BaseFloat> &in_xform,
                                               const AffineXformStats &stats,
                                               MatrixBase<BaseFloat> *out_xform);
  
  /// This does offset-only fMLLR, i.e. it only estimates an offset.
  BaseFloat ComputeFmllrMatrixDiagGmmOffset(const MatrixBase<BaseFloat> &in_xform,
                                            const AffineXformStats &stats,
                                            MatrixBase<BaseFloat> *out_xform);
  
  
  /// This function internally calls ComputeFmllrMatrixDiagGmm{Full, Diagonal, Offset},
  /// depending on "fmllr_type".
  BaseFloat ComputeFmllrMatrixDiagGmm(const MatrixBase<BaseFloat> &in_xform,
                                      const AffineXformStats &stats,
                                      std::string fmllr_type,  // "none", "offset", "diag", "full"
                                      int32 num_iters,
                                      MatrixBase<BaseFloat> *out_xform);
  
  /// Returns the (diagonal-GMM) FMLLR auxiliary function value given the transform
  /// and the stats.
  float FmllrAuxFuncDiagGmm(const MatrixBase<float> &xform,
                            const AffineXformStats &stats);
  double FmllrAuxFuncDiagGmm(const MatrixBase<double> &xform,
                             const AffineXformStats &stats);
  
  
  
  /// Returns the (diagonal-GMM) FMLLR auxiliary function value given the transform
  /// and the stats.
  BaseFloat FmllrAuxfGradient(const MatrixBase<BaseFloat> &xform,
                              const AffineXformStats &stats,
                              MatrixBase<BaseFloat> *grad_out);
  
  
  /// This function applies a feature-level transform to stats (useful for
  /// certain techniques based on fMLLR).  Assumes the stats are of the
  /// standard diagonal sort.
  /// The transform "xform" may be either dim x dim (linear),
  /// dim x dim+1 (affine), or dim+1 x dim+1 (affine with the
  /// last row equal to 0 0 0 .. 0 1).
  void ApplyFeatureTransformToStats(const MatrixBase<BaseFloat> &xform,
                                    AffineXformStats *stats);
  
  /// ApplyModelTransformToStats takes a transform "xform", which must be diagonal
  /// (i.e. of the form T = [ D; b ] where D is diagonal), and applies it to the
  /// stats as if we had made it a model-space transform (note that the transform
  /// applied to the model means is the inverse transform of T).  Thus, if we are
  /// estimating a transform T U, and we get stats valid for estimating T U and we
  /// estimate T, we can then call this function (treating T as a model-space
  /// transform) and will get stats valid for estimating U.  This only works if T is
  /// diagonal, because otherwise the standard stats format is not valid.  xform must
  /// be of dimension d x d+1
  void ApplyModelTransformToStats(const MatrixBase<BaseFloat> &xform,
                                  AffineXformStats *stats);
  
  
  /// This function does one row of the inner-loop fMLLR transform update.
  /// We export it because it's needed in the RawFmllr code.
  /// Here, if inv_G is the inverse of the G matrix indexed by this row,
  /// and k is the corresponding row of the K matrix.
  void FmllrInnerUpdate(SpMatrix<double> &inv_G,
                        VectorBase<double> &k,
                        double beta,
                        int32 row,
                        MatrixBase<double> *transform);
  
                        
                        
  
  
  } // namespace kaldi
  
  #endif  // KALDI_TRANSFORM_FMLLR_DIAG_GMM_H_