Blame view
src/transform/fmllr-raw-test.cc
3.56 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 |
// transform/fmllr-raw-test.cc // Copyright 2009-2011 Microsoft Corporation // 2013 Johns Hopkins University (author: Daniel Povey) // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #include "util/common-utils.h" #include "gmm/diag-gmm.h" #include "transform/fmllr-diag-gmm.h" #include "transform/fmllr-raw.h" namespace kaldi { void InitRandomGmm (DiagGmm *gmm_in) { int32 num_gauss = 5 + rand () % 4; int32 dim = 6 + Rand() % 5; DiagGmm &gmm(*gmm_in); gmm.Resize(num_gauss, dim); Matrix<BaseFloat> inv_vars(num_gauss, dim), means(num_gauss, dim); Vector<BaseFloat> weights(num_gauss); for (int32 i = 0; i < num_gauss; i++) { for (int32 j = 0; j < dim; j++) { inv_vars(i, j) = Exp(RandGauss() * (1.0 / (1 + j))); means(i, j) = RandGauss() * (1.0 / (1 + j)); } weights(i) = Exp(RandGauss()); } weights.Scale(1.0 / weights.Sum()); gmm.SetWeights(weights); gmm.SetInvVarsAndMeans(inv_vars, means); gmm.ComputeGconsts(); } void UnitTestFmllrRaw(bool use_offset) { using namespace kaldi; DiagGmm gmm; InitRandomGmm(&gmm); int32 model_dim = gmm.Dim(); int32 raw_dim = 5 + Rand() % 3; int32 num_splice = 1 + Rand() % 5; while (num_splice * raw_dim < model_dim) { num_splice++; } int32 full_dim = num_splice * raw_dim; int32 npoints = raw_dim*(raw_dim+1)*10; Matrix<BaseFloat> rand_points(npoints, full_dim); rand_points.SetRandn(); Matrix<BaseFloat> lda_mllt(full_dim, full_dim + (use_offset ? 1 : 0)); // This is the full LDA+MLLT // matrix. TODO: test with offset. lda_mllt.SetRandn(); FmllrRawAccs accs(raw_dim, model_dim, lda_mllt); BaseFloat prev_objf_impr; for (int32 iter = 0; iter < 4; iter++) { for (int32 i = 0; i < npoints; i++) { SubVector<BaseFloat> sample(rand_points, i); accs.AccumulateForGmm(gmm, sample, 1.0); } Matrix<BaseFloat> fmllr_mat(raw_dim, raw_dim + 1); fmllr_mat.SetUnit(); // sets diagonal elements to one. FmllrRawOptions opts; BaseFloat objf_impr, count; accs.Update(opts, &fmllr_mat, &objf_impr, &count); KALDI_ASSERT(objf_impr > 0.0); if (iter != 0) { // This is not something provable, but is always true // in practice. KALDI_ASSERT(objf_impr < prev_objf_impr); } prev_objf_impr = objf_impr; // Now transform the raw features. for (int32 splice = 0; splice < num_splice; splice++) { SubMatrix<BaseFloat> raw_feats(rand_points, 0, npoints, splice * raw_dim, raw_dim); for (int32 t = 0; t < npoints; t++) { SubVector<BaseFloat> this_feat(raw_feats, t); ApplyAffineTransform(fmllr_mat, &this_feat); } } accs.SetZero(); } } } // namespace kaldi ends here int main() { kaldi::g_kaldi_verbose_level = 5; for (int i = 0; i < 2; i++) { // did more iterations when first testing... kaldi::UnitTestFmllrRaw(i % 2 == 0); } std::cout << "Test OK. "; } |