Blame view

src/transform/fmpe-test.cc 6.07 KB
8dcb6dfcb   Yannick Estève   first commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
  // transform/fmpe-test.cc
  
  // Copyright 2012  Johns Hopkins University (Author: Daniel Povey)
  
  // See ../../COPYING for clarification regarding multiple authors
  //
  // Licensed under the Apache License, Version 2.0 (the "License");
  // you may not use this file except in compliance with the License.
  // You may obtain a copy of the License at
  //
  //  http://www.apache.org/licenses/LICENSE-2.0
  //
  // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
  // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
  // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
  // MERCHANTABLITY OR NON-INFRINGEMENT.
  // See the Apache 2 License for the specific language governing permissions and
  // limitations under the License.
  
  #include "util/common-utils.h"
  #include "gmm/diag-gmm.h"
  #include "gmm/diag-gmm-normal.h"
  #include "gmm/model-test-common.h"
  #include "transform/fmpe.h"
  
  namespace kaldi {
  
  
  // Compute derivative of GMM log-likelihood w.r.t. features.
  // Note: this code copied from gmm-get-feat-deriv.cc; had
  // to simplify a bit.
  void GetFeatDeriv(const DiagGmm &gmm,
                    const Matrix<BaseFloat> &feats,
                    Matrix<BaseFloat> *deriv) {
    
    deriv->Resize(feats.NumRows(), feats.NumCols());
  
    Vector<BaseFloat> gauss_posteriors;
    Vector<BaseFloat> temp_vec(feats.NumCols());
    for (int32 i = 0; i < feats.NumRows(); i++) {
      SubVector<BaseFloat> this_feat(feats, i);
      SubVector<BaseFloat> this_deriv(*deriv, i);
      gmm.ComponentPosteriors(this_feat, &gauss_posteriors);
      BaseFloat weight = 1.0;
      gauss_posteriors.Scale(weight);
      // The next line does: to i'th row of deriv, add
      // means_invvars^T * gauss_posteriors,
      // where each row of means_invvars is the mean times
      // diagonal inverse covariance... after transposing,
      // this becomes a weighted of these rows, weighted by
      // the posteriors.  This comes from the term
      //  feat^T * inv_var * mean
      // in the objective function.
      this_deriv.AddMatVec(1.0, gmm.means_invvars(), kTrans,
                           gauss_posteriors, 1.0);
  
      // next line does temp_vec == inv_vars^T * gauss_posteriors,
      // which sets temp_vec to a weighted sum of the inv_vars,
      // weighed by Gaussian posterior.
      temp_vec.AddMatVec(1.0, gmm.inv_vars(), kTrans,
                         gauss_posteriors, 0.0);
      // Add to the derivative, -(this_feat .* temp_vec),
      // which is the term that comes from the -0.5 * inv_var^T feat_sq,
      // in the objective function (where inv_var is a vector, and feat_sq
      // is a vector of squares of the feature values).
      this_deriv.AddVecVec(-1.0, this_feat, temp_vec, 1.0);
    }
  }
  
  // Gets total log-likelihood, summed over all frames.
  BaseFloat GetGmmLike(const DiagGmm &gmm,
                       const Matrix<BaseFloat> &feats) {
    BaseFloat ans = 0.0;
    for (int32 i = 0; i < feats.NumRows(); i++)
      ans += gmm.LogLikelihood(feats.Row(i));
    return ans;
  }
  
  void TestFmpe() {
    int32 dim = 10 + (Rand() % 10);
    int32 num_comp = 10 + (Rand() % 10);
    DiagGmm gmm;
    unittest::InitRandDiagGmm(dim, num_comp, &gmm);
    
    int32 num_frames = 20;
    Matrix<BaseFloat> feats(num_frames, dim);
  
    for (int32 i = 0; i < num_frames; i++)
      for (int32 j = 0; j < dim; j++)
        feats(i, j) = RandGauss();
  
    FmpeOptions opts; // Default.
    {
      Fmpe fmpe(gmm, opts);
      {
        bool binary = (Rand() % 2 == 1);
        Output ko("tmpf", binary);
        fmpe.Write(ko.Stream(), binary);
      }
    }
    Fmpe fmpe(gmm, opts);
    {
      bool binary_in;
      Input ki("tmpf", &binary_in);
      fmpe.Read(ki.Stream(), binary_in);
    }
  
    // We'll first be testing that the feature derivative is
    // accurate, by measuring a small random offset in feature space.
    {
      Matrix<BaseFloat> deriv;
      Matrix<BaseFloat> random_offset(feats.NumRows(), feats.NumCols());
      for (int32 i = 0; i < feats.NumRows(); i++)
        for (int32 j = 0; j < feats.NumCols(); j++)
          random_offset(i, j) = 1.0e-03 * RandGauss();
      BaseFloat like_before = GetGmmLike(gmm, feats);
      feats.AddMat(1.0, random_offset);
      BaseFloat like_after = GetGmmLike(gmm, feats);
      feats.AddMat(-1.0, random_offset); // undo the change.
      GetFeatDeriv(gmm, feats, &deriv);
      BaseFloat change1 = like_after - like_before,
          change2 = TraceMatMat(random_offset, deriv, kTrans);
      KALDI_LOG << "Random offset led to like change "
                << change1 << " (manually), and " << change2
                << " (derivative)";
      // note: not making this threshold smaller, as don't want
      // spurious failures.  Seems to be OK though.
      KALDI_ASSERT( fabs(change1-change2) < 0.15*fabs(change1+change2));
    }
  
    std::vector<std::vector<int32> > gselect(feats.NumRows()); // make it have all Gaussians...
    for (int32 i = 0; i < feats.NumRows(); i++)
      for (int32 j = 0; j < gmm.NumGauss(); j++)
        gselect[i].push_back(j);
  
    Matrix<BaseFloat> fmpe_offset;
    // Check that the fMPE feature offset is zero.
    fmpe.ComputeFeatures(feats, gselect, &fmpe_offset);
    KALDI_ASSERT(fmpe_offset.IsZero());
    
    // Note: we're just using the ML objective function here.
    // This is just to make sure the derivatives are all computed
    // correctly.
    BaseFloat like_before_update = GetGmmLike(gmm, feats);
    // Now get stats for update.
    FmpeStats stats(fmpe);
    Matrix<BaseFloat> deriv;
    GetFeatDeriv(gmm, feats, &deriv);
    fmpe.AccStats(feats, gselect, deriv, NULL, &stats);
    FmpeUpdateOptions update_opts;
    update_opts.learning_rate = 0.001; // so linear assumption is more valid.
    BaseFloat delta = fmpe.Update(update_opts, stats);
  
    fmpe.ComputeFeatures(feats, gselect, &fmpe_offset);
    feats.AddMat(1.0, fmpe_offset);
  
    BaseFloat like_after_update = GetGmmLike(gmm, feats);
  
    BaseFloat delta2 = like_after_update - like_before_update;
    KALDI_LOG << "Change predicted by fMPE Update function is "
              << delta << ", change computed directly is "
              << delta2;
    KALDI_ASSERT(fabs(delta-delta2) < 0.15 * fabs(delta+delta2));
    
    unlink("tmpf");
  }
  
  }
  
  
  int main() {
    kaldi::g_kaldi_verbose_level = 5;
    for (int i = 0; i <= 10; i++)
      kaldi::TestFmpe();
    std::cout << "Test OK.
  ";
  }