Blame view
src/transform/fmpe-test.cc
6.07 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 |
// transform/fmpe-test.cc // Copyright 2012 Johns Hopkins University (Author: Daniel Povey) // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #include "util/common-utils.h" #include "gmm/diag-gmm.h" #include "gmm/diag-gmm-normal.h" #include "gmm/model-test-common.h" #include "transform/fmpe.h" namespace kaldi { // Compute derivative of GMM log-likelihood w.r.t. features. // Note: this code copied from gmm-get-feat-deriv.cc; had // to simplify a bit. void GetFeatDeriv(const DiagGmm &gmm, const Matrix<BaseFloat> &feats, Matrix<BaseFloat> *deriv) { deriv->Resize(feats.NumRows(), feats.NumCols()); Vector<BaseFloat> gauss_posteriors; Vector<BaseFloat> temp_vec(feats.NumCols()); for (int32 i = 0; i < feats.NumRows(); i++) { SubVector<BaseFloat> this_feat(feats, i); SubVector<BaseFloat> this_deriv(*deriv, i); gmm.ComponentPosteriors(this_feat, &gauss_posteriors); BaseFloat weight = 1.0; gauss_posteriors.Scale(weight); // The next line does: to i'th row of deriv, add // means_invvars^T * gauss_posteriors, // where each row of means_invvars is the mean times // diagonal inverse covariance... after transposing, // this becomes a weighted of these rows, weighted by // the posteriors. This comes from the term // feat^T * inv_var * mean // in the objective function. this_deriv.AddMatVec(1.0, gmm.means_invvars(), kTrans, gauss_posteriors, 1.0); // next line does temp_vec == inv_vars^T * gauss_posteriors, // which sets temp_vec to a weighted sum of the inv_vars, // weighed by Gaussian posterior. temp_vec.AddMatVec(1.0, gmm.inv_vars(), kTrans, gauss_posteriors, 0.0); // Add to the derivative, -(this_feat .* temp_vec), // which is the term that comes from the -0.5 * inv_var^T feat_sq, // in the objective function (where inv_var is a vector, and feat_sq // is a vector of squares of the feature values). this_deriv.AddVecVec(-1.0, this_feat, temp_vec, 1.0); } } // Gets total log-likelihood, summed over all frames. BaseFloat GetGmmLike(const DiagGmm &gmm, const Matrix<BaseFloat> &feats) { BaseFloat ans = 0.0; for (int32 i = 0; i < feats.NumRows(); i++) ans += gmm.LogLikelihood(feats.Row(i)); return ans; } void TestFmpe() { int32 dim = 10 + (Rand() % 10); int32 num_comp = 10 + (Rand() % 10); DiagGmm gmm; unittest::InitRandDiagGmm(dim, num_comp, &gmm); int32 num_frames = 20; Matrix<BaseFloat> feats(num_frames, dim); for (int32 i = 0; i < num_frames; i++) for (int32 j = 0; j < dim; j++) feats(i, j) = RandGauss(); FmpeOptions opts; // Default. { Fmpe fmpe(gmm, opts); { bool binary = (Rand() % 2 == 1); Output ko("tmpf", binary); fmpe.Write(ko.Stream(), binary); } } Fmpe fmpe(gmm, opts); { bool binary_in; Input ki("tmpf", &binary_in); fmpe.Read(ki.Stream(), binary_in); } // We'll first be testing that the feature derivative is // accurate, by measuring a small random offset in feature space. { Matrix<BaseFloat> deriv; Matrix<BaseFloat> random_offset(feats.NumRows(), feats.NumCols()); for (int32 i = 0; i < feats.NumRows(); i++) for (int32 j = 0; j < feats.NumCols(); j++) random_offset(i, j) = 1.0e-03 * RandGauss(); BaseFloat like_before = GetGmmLike(gmm, feats); feats.AddMat(1.0, random_offset); BaseFloat like_after = GetGmmLike(gmm, feats); feats.AddMat(-1.0, random_offset); // undo the change. GetFeatDeriv(gmm, feats, &deriv); BaseFloat change1 = like_after - like_before, change2 = TraceMatMat(random_offset, deriv, kTrans); KALDI_LOG << "Random offset led to like change " << change1 << " (manually), and " << change2 << " (derivative)"; // note: not making this threshold smaller, as don't want // spurious failures. Seems to be OK though. KALDI_ASSERT( fabs(change1-change2) < 0.15*fabs(change1+change2)); } std::vector<std::vector<int32> > gselect(feats.NumRows()); // make it have all Gaussians... for (int32 i = 0; i < feats.NumRows(); i++) for (int32 j = 0; j < gmm.NumGauss(); j++) gselect[i].push_back(j); Matrix<BaseFloat> fmpe_offset; // Check that the fMPE feature offset is zero. fmpe.ComputeFeatures(feats, gselect, &fmpe_offset); KALDI_ASSERT(fmpe_offset.IsZero()); // Note: we're just using the ML objective function here. // This is just to make sure the derivatives are all computed // correctly. BaseFloat like_before_update = GetGmmLike(gmm, feats); // Now get stats for update. FmpeStats stats(fmpe); Matrix<BaseFloat> deriv; GetFeatDeriv(gmm, feats, &deriv); fmpe.AccStats(feats, gselect, deriv, NULL, &stats); FmpeUpdateOptions update_opts; update_opts.learning_rate = 0.001; // so linear assumption is more valid. BaseFloat delta = fmpe.Update(update_opts, stats); fmpe.ComputeFeatures(feats, gselect, &fmpe_offset); feats.AddMat(1.0, fmpe_offset); BaseFloat like_after_update = GetGmmLike(gmm, feats); BaseFloat delta2 = like_after_update - like_before_update; KALDI_LOG << "Change predicted by fMPE Update function is " << delta << ", change computed directly is " << delta2; KALDI_ASSERT(fabs(delta-delta2) < 0.15 * fabs(delta+delta2)); unlink("tmpf"); } } int main() { kaldi::g_kaldi_verbose_level = 5; for (int i = 0; i <= 10; i++) kaldi::TestFmpe(); std::cout << "Test OK. "; } |