Blame view

src/transform/lda-estimate.h 4.47 KB
8dcb6dfcb   Yannick Estève   first commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
  // transform/lda-estimate.h
  
  // Copyright 2009-2011  Jan Silovsky
  
  // See ../../COPYING for clarification regarding multiple authors
  //
  // Licensed under the Apache License, Version 2.0 (the "License");
  // you may not use this file except in compliance with the License.
  // You may obtain a copy of the License at
  //
  //  http://www.apache.org/licenses/LICENSE-2.0
  //
  // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
  // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
  // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
  // MERCHANTABLITY OR NON-INFRINGEMENT.
  // See the Apache 2 License for the specific language governing permissions and
  // limitations under the License.
  
  #ifndef KALDI_TRANSFORM_LDA_ESTIMATE_H_
  #define KALDI_TRANSFORM_LDA_ESTIMATE_H_
  
  #include "base/kaldi-common.h"
  #include "util/common-utils.h"
  #include "matrix/matrix-lib.h"
  
  namespace kaldi {
  
  struct LdaEstimateOptions {
    bool remove_offset;
    int32 dim;
    bool allow_large_dim;
    BaseFloat within_class_factor; // TODO: remove this eventually, it
    // is deprecated (that code is now in ../nnet2/get-feature-transform.{h,cc})
    LdaEstimateOptions(): remove_offset(false), dim(40), allow_large_dim(false),
                          within_class_factor(1.0) { }
    
    void Register(OptionsItf *opts) {
      opts->Register("remove-offset", &remove_offset, "If true, output an affine "
                     "transform that makes the projected data mean equal to zero.");
      opts->Register("dim", &dim, "Dimension to project to with LDA");
      opts->Register("allow-large-dim", &allow_large_dim, "If true, allow an LDA "
                     "dimension larger than the number of classes.");
      opts->Register("within-class-factor", &within_class_factor, "(Deprecated) If 1.0, do "
                     "conventional LDA where the within-class variance will be "
                     "unit in the projected space.  May be set to less than 1.0, "
                     "which scales the features to have less variance, particularly "
                     "for dimensions where between-class variance is small; "
                     "this is a feature being experimented with for neural-net "
                     "input.");
    }    
  };
  
  /** Class for computing linear discriminant analysis (LDA) transform.
      C.f. \ref transform_lda.
   */
  class LdaEstimate {
   public:
    LdaEstimate() {}
  
    /// Allocates memory for accumulators
    void Init(int32 num_classes, int32 dimension);
    /// Returns the number of classes
    int32 NumClasses() const { return first_acc_.NumRows(); }
    /// Returns the dimensionality of the feature vectors
    int32 Dim() const { return first_acc_.NumCols(); }
    /// Sets all accumulators to zero
    void ZeroAccumulators();
    /// Scales all accumulators
    void Scale(BaseFloat f);
    /// Return total count of the data.
    double TotCount() { return zero_acc_.Sum(); }
  
    /// Accumulates data
    void Accumulate(const VectorBase<BaseFloat> &data, int32 class_id, BaseFloat weight = 1.0);
  
    /// Estimates the LDA transform matrix m.  If Mfull != NULL, it also outputs
    /// the full matrix (without dimensionality reduction), which is useful for
    /// some purposes.  If opts.remove_offset == true, it will output both matrices
    /// with an extra column which corresponds to mean-offset removal (the matrix
    /// should be multiplied by the feature with a 1 appended to give the correct
    /// result, as with other Kaldi transforms.)
    /// The "remove_offset" argument is new and should be set to false for back
    /// compatibility.
    void Estimate(const LdaEstimateOptions &opts, 
                  Matrix<BaseFloat> *M,
                  Matrix<BaseFloat> *Mfull = NULL) const;
  
    void Read(std::istream &in_stream, bool binary, bool add);
    void Write(std::ostream &out_stream, bool binary) const;
  
   protected:
    Vector<double> zero_acc_;
    Matrix<double> first_acc_;
    SpMatrix<double> total_second_acc_;
  
    /// This function modifies the LDA matrix so that it
    /// also subtracts the mean feature value.
    static void AddMeanOffset(const VectorBase<double> &total_mean,
                              Matrix<BaseFloat> *projection);
  
    /// Extract a more processed form of the stats.
    void GetStats(SpMatrix<double> *total_covar,
                  SpMatrix<double> *between_covar,
                  Vector<double> *total_mean,
                  double *sum) const;
    
    // Disallow assignment operator.
    LdaEstimate &operator = (const LdaEstimate &other);
  };
  
  }  // End namespace kaldi
  
  #endif  // KALDI_TRANSFORM_LDA_ESTIMATE_H_