Blame view
src/transform/regtree-fmllr-diag-gmm-test.cc
10.4 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 |
// transform/regtree-fmllr-diag-gmm-test.cc // Copyright 2009-2011 Georg Stemmer; Saarland University // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #include "util/common-utils.h" #include "gmm/diag-gmm.h" #include "gmm/mle-diag-gmm.h" #include "gmm/mle-am-diag-gmm.h" #include "gmm/model-test-common.h" #include "transform/regtree-fmllr-diag-gmm.h" namespace kaldi { static void RandFullCova(Matrix<BaseFloat> *matrix) { size_t dim = matrix->NumCols(); KALDI_ASSERT(matrix->NumCols() == matrix->NumRows()); size_t iter = 0; size_t max_iter = 10000; // generate random (non-singular) matrix // until condition Matrix<BaseFloat> tmp(dim, dim); SpMatrix<BaseFloat> tmp2(dim); while (iter < max_iter) { tmp.SetRandn(); if (tmp.Cond() < 100) break; iter++; } if (iter >= max_iter) { KALDI_ERR << "Internal error: found no random covariance matrix."; } // tmp * tmp^T will give positive definite matrix tmp2.AddMat2(1.0, tmp, kNoTrans, 0.0); matrix->CopyFromSp(tmp2); } /// Generate features for a certain covariance type /// covariance_type == 0: full covariance /// covariance_type == 1: diagonal covariance enum cova_type { full, diag }; static void generate_features(cova_type covariance_type, size_t n_gaussians, size_t dim, Matrix<BaseFloat> &trans_mat, size_t frames_per_gaussian, std::vector<Vector<BaseFloat>*> & train_feats, std::vector<Vector<BaseFloat>*> & adapt_feats ) { // compute inverse of the transformation matrix Matrix<BaseFloat> inv_trans_mat(dim, dim); inv_trans_mat.CopyFromMat(trans_mat, kNoTrans); inv_trans_mat.Invert(); // the untransformed means are random Matrix<BaseFloat> untransformed_means(dim, n_gaussians); untransformed_means.SetRandn(); untransformed_means.Scale(10); // the actual means result from // transformation with inv_trans_mat Matrix<BaseFloat> actual_means(dim, n_gaussians); // actual_means = inv_trans_mat * untransformed_means actual_means.AddMatMat(1.0, inv_trans_mat, kNoTrans, untransformed_means, kNoTrans, 0.0); size_t train_counter = 0; // temporary variables Vector<BaseFloat> randomvec(dim); Matrix<BaseFloat> Sj(dim, dim); // loop over all gaussians for (size_t j = 0; j < n_gaussians; j++) { if (covariance_type == diag) { // random diagonal covariance for gaussian j Sj.SetZero(); for (size_t d = 0; d < dim; d++) { Sj(d, d) = 2*Exp(RandGauss()); } } if (covariance_type == full) { // random full covariance for gaussian j RandFullCova(&Sj); } // compute inv_trans_mat * Sj Matrix<BaseFloat> tmp_matrix(dim, dim); tmp_matrix.AddMatMat(1.0, inv_trans_mat, kNoTrans, Sj, kNoTrans, 0.0); // compute features for (size_t i = 0; i < frames_per_gaussian; i++) { train_feats[train_counter] = new Vector<BaseFloat>(dim); adapt_feats[train_counter] = new Vector<BaseFloat>(dim); // initalize feature vector with mean of class j train_feats[train_counter]->CopyColFromMat(untransformed_means, j); adapt_feats[train_counter]->CopyColFromMat(actual_means, j); // determine random vector and // multiply the random vector with SJ // and add it to train_feats: // train_feats = train_feats + SJ * random // for adapt_feats we include the invtrans_mat: // adapt_feats = adapt_feats + invtrans_mat * SJ * random for (size_t d = 0; d < dim; d++) { randomvec(d) = RandGauss(); } train_feats[train_counter]->AddMatVec(1.0, Sj, kNoTrans, randomvec, 1.0); adapt_feats[train_counter]->AddMatVec(1.0, tmp_matrix, kNoTrans, randomvec, 1.0); train_counter++; } } return; } void UnitTestRegtreeFmllrDiagGmm(cova_type feature_type, size_t max_bclass) { // dimension of the feature space size_t dim = 5 + Rand() % 3; // number of components in the data size_t n_gaussians = 8; // number of data points to generate for every gaussian size_t frames_per_gaussian = 100; // generate random transformation matrix trans_mat Matrix<BaseFloat> trans_mat(dim, dim); int i = 0; while (i < 10000) { trans_mat.SetRandn(); if (trans_mat.Cond() < 100) break; i++; } std::cout << "Condition of original Trans_Mat: " << trans_mat.Cond() << ' '; // generate many feature vectors for each of the mixture components std::vector<Vector<BaseFloat>*> train_feats(n_gaussians * frames_per_gaussian); std::vector<Vector<BaseFloat>*> adapt_feats(n_gaussians * frames_per_gaussian); generate_features(feature_type, n_gaussians, dim, trans_mat, frames_per_gaussian, train_feats, adapt_feats); // initial values for a GMM Vector<BaseFloat> weights(1); Matrix<BaseFloat> means(1, dim), vars(1, dim), invvars(1, dim); for (size_t d= 0; d < dim; d++) { means(0, d) = 0.0F; vars(0, d) = 1.0F; } weights(0) = 1.0F; invvars.CopyFromMat(vars); invvars.InvertElements(); // new HMM with 1 state DiagGmm *gmm = new DiagGmm(); gmm->Resize(1, dim); gmm->SetWeights(weights); gmm->SetInvVarsAndMeans(invvars, means); gmm->ComputeGconsts(); GmmFlagsType flags = kGmmAll; MleDiagGmmOptions opts; AmDiagGmm *am = new AmDiagGmm(); am->AddPdf(*gmm); AccumAmDiagGmm *est_am = new AccumAmDiagGmm(); // train HMM size_t iteration = 0; size_t maxiterations = 10; int32 maxcomponents = n_gaussians; BaseFloat loglike = 0; while (iteration < maxiterations) { est_am->Init(*am, flags); loglike = 0; for (size_t j = 0; j < train_feats.size(); j++) { loglike += est_am->AccumulateForGmm(*am, *train_feats[j], 0, 1.0); } MleAmDiagGmmUpdate(opts, *est_am, flags, am, NULL, NULL); std::cout << "Loglikelihood before iteration " << iteration << " : " << std::scientific << loglike << " number of components: " << am->NumGaussInPdf(0) << ' '; if ((iteration % 3 == 1) && (am->NumGaussInPdf(0) * 2 <= maxcomponents)) { size_t n = am->NumGaussInPdf(0)*2; am->SplitPdf(0, n, 0.001); } iteration++; } // adapt HMM to the transformed feature vectors iteration = 0; RegtreeFmllrDiagGmmAccs * fmllr_accs = new RegtreeFmllrDiagGmmAccs(); RegressionTree regtree; RegtreeFmllrOptions xform_opts; xform_opts.min_count = 100 * (1 + Rand() % 10); xform_opts.use_regtree = (RandUniform() < 0.5)? false : true; size_t num_pdfs = 1; Vector<BaseFloat> occs(num_pdfs); for (int32 i = 0; i < static_cast<int32>(num_pdfs); i++) { occs(i) = 1.0/static_cast<BaseFloat>(num_pdfs); } std::vector<int32> silphones; regtree.BuildTree(occs, silphones, *am, max_bclass); maxiterations = 10; std::vector<Vector<BaseFloat>*> logdet(adapt_feats.size()); for (size_t j = 0; j < adapt_feats.size(); j++) { logdet[j] = new Vector<BaseFloat>(1); logdet[j]->operator()(0) = 0.0; } while (iteration < maxiterations) { fmllr_accs->Init(regtree.NumBaseclasses(), dim); fmllr_accs->SetZero(); RegtreeFmllrDiagGmm *new_fmllr = new RegtreeFmllrDiagGmm(); loglike = 0; for (size_t j = 0; j < adapt_feats.size(); j++) { loglike += fmllr_accs->AccumulateForGmm(regtree, *am, *adapt_feats[j], 0, 1.0); loglike += logdet[j]->operator()(0); } std::cout << "FMLLR: Loglikelihood before iteration " << iteration << " : " << std::scientific << loglike << ' '; fmllr_accs->Update(regtree, xform_opts, new_fmllr, NULL, NULL); std::cout << "Got " << new_fmllr->NumBaseClasses() << " baseclasses "; bool binary = (RandUniform() < 0.5)? true : false; std::cout << "Writing the transform to disk. "; new_fmllr->Write(Output("tmpf", binary).Stream(), binary); RegtreeFmllrDiagGmm *fmllr_read = new RegtreeFmllrDiagGmm(); bool binary_in; Input ki("tmpf", &binary_in); std::cout << "Reading the transform from disk. "; fmllr_read->Read(ki.Stream(), binary_in); fmllr_read->Validate(); // transform features std::vector<Vector<BaseFloat> > trans_feats(1); Vector<BaseFloat> trans_logdet; // new_fmllr->ComputeLogDets(); trans_logdet.Resize(fmllr_read->NumRegClasses()); fmllr_read->GetLogDets(&trans_logdet); for (size_t j = 0; j < adapt_feats.size(); j++) { fmllr_read->TransformFeature(*adapt_feats[j], &trans_feats); logdet[j]->operator()(0) += trans_logdet(0); adapt_feats[j]->CopyFromVec(trans_feats[0]); } iteration++; delete new_fmllr; delete fmllr_read; unlink("tmpf"); } // // transform features with empty transform // std::vector<Vector<BaseFloat> > trans_feats(1); // RegtreeFmllrDiagGmm *empty_fmllr = new RegtreeFmllrDiagGmm(); // empty_fmllr->Init(0, 0); // for (size_t j = 0; j < adapt_feats.size(); j++) { // empty_fmllr->TransformFeature(*adapt_feats[j], &trans_feats); // } // delete empty_fmllr; // clean up delete fmllr_accs; delete est_am; delete am; delete gmm; DeletePointers(&logdet); DeletePointers(&train_feats); DeletePointers(&adapt_feats); } } // namespace kaldi ends here int main() { for (int i = 0; i <= 8; i+=2) { // test is too slow so can't do too many std::cout << "--------------------------------------" << ' '; std::cout << "Test number " << i << ' '; std::cout << "-- features = full "; kaldi::UnitTestRegtreeFmllrDiagGmm(kaldi::full, (i%10+1)); std::cout << "-- features = diag "; kaldi::UnitTestRegtreeFmllrDiagGmm(kaldi::diag, (i%10+1)); std::cout << "--------------------------------------" << ' '; } std::cout << "Test OK. "; } |