Blame view

src/transform/regtree-fmllr-diag-gmm.cc 15.4 KB
8dcb6dfcb   Yannick Estève   first commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
  // transform/regtree-fmllr-diag-gmm.cc
  
  // Copyright 2009-2011  Saarland University;  Georg Stemmer;
  //                      Microsoft Corporation
  
  // See ../../COPYING for clarification regarding multiple authors
  //
  // Licensed under the Apache License, Version 2.0 (the "License");
  // you may not use this file except in compliance with the License.
  // You may obtain a copy of the License at
  //
  //  http://www.apache.org/licenses/LICENSE-2.0
  //
  // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
  // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
  // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
  // MERCHANTABLITY OR NON-INFRINGEMENT.
  // See the Apache 2 License for the specific language governing permissions and
  // limitations under the License.
  
  #include <utility>
  #include <vector>
  using std::vector;
  
  #include "itf/optimizable-itf.h"
  #include "transform/fmllr-diag-gmm.h"
  #include "transform/regtree-fmllr-diag-gmm.h"
  
  namespace kaldi {
  
  void RegtreeFmllrDiagGmm::Init(size_t num_xforms, size_t dim) {
    if (num_xforms == 0) {  // empty transform
      xform_matrices_.clear();
      logdet_.Resize(0);
      valid_logdet_ = false;
      dim_ = 0;  // non-zero dimension is meaningless with empty transform
      num_xforms_ = 0;
    } else {
      KALDI_ASSERT(dim != 0);  // if not empty, dim = 0 is meaningless
      dim_ = dim;
      num_xforms_ = num_xforms;
      xform_matrices_.resize(num_xforms);
      logdet_.Resize(num_xforms);
      vector< Matrix<BaseFloat> >::iterator xform_itr = xform_matrices_.begin(),
          xform_itr_end = xform_matrices_.end();
      for (; xform_itr != xform_itr_end; ++xform_itr) {
        xform_itr->Resize(dim, dim+1);
        xform_itr->SetUnit();
      }
      valid_logdet_ = true;
    }
  }
  
  void RegtreeFmllrDiagGmm::SetUnit() {
    KALDI_ASSERT(num_xforms_ > 0 && dim_ > 0);
    vector< Matrix<BaseFloat> >::iterator xform_itr = xform_matrices_.begin(),
        xform_itr_end = xform_matrices_.end();
    for (; xform_itr != xform_itr_end; ++xform_itr) {
      xform_itr->SetUnit();
    }
  }
  
  void RegtreeFmllrDiagGmm::Validate() {
    if (dim_ < 0 || num_xforms_ < 0) {  // uninitialized case
      KALDI_ERR <<"Do not call Validate() with an uninitialized object (dim = "
                << (dim_) << ", # transforms = " << (num_xforms_);
    } else if (dim_ * num_xforms_ == 0) {  // empty case
      KALDI_ASSERT(num_xforms_ == 0 && dim_ == 0);
      if (xform_matrices_.size() != 0 || logdet_.Dim() != 0) {
        KALDI_ERR << "Number of transforms = " << (xform_matrices_.size())
                  << ", number of log-determinant terms = " << (logdet_.Dim())
                  << ". Expected number = 0";
      }
      return;
    }
  
    // non-empty case: typical usage scenario
    if (xform_matrices_.size() != static_cast<size_t>(num_xforms_)
        || logdet_.Dim() != num_xforms_) {
      KALDI_ERR << "Number of transforms = " << (xform_matrices_.size())
                << ", number of log-determinant terms = " << (logdet_.Dim())
                << ". `Expected number = " << (num_xforms_);
    }
    for (int32 i = 0; i < num_xforms_; i++) {
      if (xform_matrices_[i].NumRows() != dim_ ||
          xform_matrices_[i].NumCols() != (dim_+1)) {
        KALDI_ERR << "For transform " << (i) << ": inconsistent size: rows = "
                  << (xform_matrices_[i].NumRows()) << ", cols = "
                  << xform_matrices_[i].NumCols() << ", dim = " << (dim_);
      }
    }
    if (bclass2xforms_.size() > 0) {
      for (int32 i = 0, maxi = bclass2xforms_.size(); i < maxi; i++) {
        if (bclass2xforms_[i] >= num_xforms_) {
          KALDI_ERR << "For baseclass " << (i) << ", transform index "
                    << (bclass2xforms_[i]) << " exceeds total transforms "
                    << (num_xforms_);
        }
      }
    } else {
      if (num_xforms_ > 1) {
        KALDI_WARN << "Multiple FMLLR transforms found without baseclass info.";
      }
    }
  }
  
  void RegtreeFmllrDiagGmm::ComputeLogDets() {
    logdet_.Resize(num_xforms_);
    for (int32 r = 0; r < num_xforms_; r++) {
      SubMatrix<BaseFloat> tmp_a(xform_matrices_[r], 0, dim_, 0,
                                 dim_);
      logdet_(r) = tmp_a.LogDet();
      KALDI_ASSERT(!KALDI_ISNAN(logdet_(r)));
    }
    valid_logdet_ = true;
  }
  
  void RegtreeFmllrDiagGmm::TransformFeature(const VectorBase<BaseFloat> &in,
                                      vector<Vector<BaseFloat> > *out) const {
    KALDI_ASSERT(out != NULL);
  
    if (xform_matrices_.size() == 0) {  // empty transform
      KALDI_ASSERT(num_xforms_ == 0 && dim_ == 0 && logdet_.Dim() == 0);
      KALDI_WARN << "Asked to apply empty feature transform. Copying instead.";
      out->resize(1);
      (*out)[0].Resize(in.Dim());
      (*out)[0].CopyFromVec(in);
      return;
    } else {
      KALDI_ASSERT(in.Dim() == dim_);
      // if (!valid_logdet_)
      // KALDI_ERR << "Must call ComputeLogDets() before transforming data.";
      // [no need for this check].
      Vector<BaseFloat> extended_feat(dim_ + 1);
      extended_feat.Range(0, dim_).CopyFromVec(in);
      extended_feat(dim_) = 1.0;
      KALDI_ASSERT(num_xforms_ > 0);
      out->resize(num_xforms_);
      for (int32 xform_index = 0; xform_index < num_xforms_;
           ++xform_index) {
        (*out)[xform_index].Resize(dim_);
        (*out)[xform_index].AddMatVec(1.0, xform_matrices_[xform_index],
                                      kNoTrans, extended_feat, 0.0);
      }
    }
  }
  
  void RegtreeFmllrDiagGmm::Write(std::ostream &out, bool binary) const {
    WriteToken(out, binary, "<FMLLRXFORM>");
    WriteToken(out, binary, "<NUMXFORMS>");
    WriteBasicType(out, binary, num_xforms_);
    WriteToken(out, binary, "<DIMENSION>");
    WriteBasicType(out, binary, dim_);
  
    vector< Matrix<BaseFloat> >::const_iterator xform_itr =
        xform_matrices_.begin(), xform_itr_end = xform_matrices_.end();
    for (; xform_itr != xform_itr_end; ++xform_itr) {
      WriteToken(out, binary, "<XFORM>");
      xform_itr->Write(out, binary);
    }
  
    WriteToken(out, binary, "<BCLASS2XFORMS>");
    WriteIntegerVector(out, binary, bclass2xforms_);
    WriteToken(out, binary, "</FMLLRXFORM>");
  }
  
  
  void RegtreeFmllrDiagGmm::Read(std::istream &in, bool binary) {
    ExpectToken(in, binary, "<FMLLRXFORM>");
    ExpectToken(in, binary, "<NUMXFORMS>");
    ReadBasicType(in, binary, &num_xforms_);
    ExpectToken(in, binary, "<DIMENSION>");
    ReadBasicType(in, binary, &dim_);
    KALDI_ASSERT(num_xforms_ >= 0 && dim_ >= 0);  // can be 0 for empty xform
  
    xform_matrices_.resize(num_xforms_);
    vector< Matrix<BaseFloat> >::iterator xform_itr = xform_matrices_.begin(),
        xform_itr_end = xform_matrices_.end();
    for (; xform_itr != xform_itr_end; ++xform_itr) {
      ExpectToken(in, binary, "<XFORM>");
      xform_itr->Read(in, binary);
      KALDI_ASSERT(xform_itr->NumRows() == (xform_itr->NumCols() - 1)
             && xform_itr->NumRows() == dim_);
    }
  
    ExpectToken(in, binary, "<BCLASS2XFORMS>");
    ReadIntegerVector(in, binary, &bclass2xforms_);
    ExpectToken(in, binary, "</FMLLRXFORM>");
    ComputeLogDets();  // so that the transforms can be used.
  }
  
  // ************************************************************************
  
  
  
  
  void RegtreeFmllrDiagGmmAccs::Init(size_t num_bclass, size_t dim) {
    if (num_bclass == 0) {  // empty stats
      DeletePointers(&baseclass_stats_);
      baseclass_stats_.clear();
      num_baseclasses_ = 0;
      dim_ = 0;  // non-zero dimension is meaningless in empty stats
    } else {
      KALDI_ASSERT(dim != 0);  // if not empty, dim = 0 is meaningless
      num_baseclasses_ = num_bclass;
      dim_ = dim;
      DeletePointers(&baseclass_stats_);
      baseclass_stats_.resize(num_bclass);
      for (vector<AffineXformStats*>::iterator it = baseclass_stats_.begin(),
               end = baseclass_stats_.end(); it != end; ++it) {
        *it = new AffineXformStats();
        (*it)->Init(dim, dim);
      }
    }
  }
  
  void RegtreeFmllrDiagGmmAccs::SetZero() {
    for (vector<AffineXformStats*>::iterator it = baseclass_stats_.begin(),
             end = baseclass_stats_.end(); it != end; ++it) {
      (*it)->SetZero();
    }
  }
  
  BaseFloat RegtreeFmllrDiagGmmAccs::AccumulateForGmm(
      const RegressionTree &regtree, const AmDiagGmm &am,
      const VectorBase<BaseFloat> &data, size_t pdf_index, BaseFloat weight) {
    const DiagGmm &pdf = am.GetPdf(pdf_index);
    int32 num_comp = pdf.NumGauss();
    Vector<BaseFloat> posterior(num_comp);
    BaseFloat loglike = pdf.ComponentPosteriors(data, &posterior);
    posterior.Scale(weight);
    Vector<double> posterior_d(posterior);
  
    Vector<double> extended_data(dim_+1);
    extended_data.Range(0, dim_).CopyFromVec(data);
    extended_data(dim_) = 1.0;
    SpMatrix<double> scatter(dim_+1);
    scatter.AddVec2(1.0, extended_data);
  
    Vector<double> inv_var_mean(dim_);
    Matrix<double> g_scale(baseclass_stats_.size(), dim_);  // scale on "scatter" for each dim.
    for (int32 m = 0; m < num_comp; m++) {
      inv_var_mean.CopyRowFromMat(pdf.means_invvars(), m);
      int32 bclass = regtree.Gauss2BaseclassId(pdf_index, m);
  
      baseclass_stats_[bclass]->beta_ += posterior_d(m);
      baseclass_stats_[bclass]->K_.AddVecVec(posterior_d(m), inv_var_mean,
                                             extended_data);
      for (int32 d = 0; d < dim_; d++)
        g_scale(bclass, d) +=  posterior(m) * pdf.inv_vars()(m, d);
    }
    for (size_t bclass = 0; bclass < baseclass_stats_.size(); bclass++) {
      vector< SpMatrix<double> > &G = baseclass_stats_[bclass]->G_;
      for (int32 d = 0; d < dim_; d++)
        if (g_scale(bclass, d) != 0.0)
          G[d].AddSp(g_scale(bclass, d), scatter);
    }
    return loglike;
  }
  
  void RegtreeFmllrDiagGmmAccs::AccumulateForGaussian(
      const RegressionTree &regtree, const AmDiagGmm &am,
      const VectorBase<BaseFloat> &data, size_t pdf_index, size_t gauss_index,
      BaseFloat weight) {
    const DiagGmm &pdf = am.GetPdf(pdf_index);
    size_t dim = static_cast<size_t>(dim_);
    Vector<double> extended_data(dim+1);
    extended_data.Range(0, dim).CopyFromVec(data);
    extended_data(dim) = 1.0;
    SpMatrix<double> scatter(dim+1);
    scatter.AddVec2(1.0, extended_data);
    double weight_d = static_cast<double>(weight);
  
    unsigned bclass = regtree.Gauss2BaseclassId(pdf_index, gauss_index);
    Vector<double> inv_var_mean(dim_);
    inv_var_mean.CopyRowFromMat(pdf.means_invvars(), gauss_index);
  
    baseclass_stats_[bclass]->beta_ += weight_d;
    baseclass_stats_[bclass]->K_.AddVecVec(weight_d, inv_var_mean, extended_data);
    vector< SpMatrix<double> > &G = baseclass_stats_[bclass]->G_;
    for (size_t d = 0; d < dim; d++)
      G[d].AddSp((weight_d * pdf.inv_vars()(gauss_index, d)), scatter);
  }
  
  void RegtreeFmllrDiagGmmAccs::Write(std::ostream &out, bool binary) const {
    WriteToken(out, binary, "<FMLLRACCS>");
    WriteToken(out, binary, "<NUMBASECLASSES>");
    WriteBasicType(out, binary, num_baseclasses_);
    WriteToken(out, binary, "<DIMENSION>");
    WriteBasicType(out, binary, dim_);
    WriteToken(out, binary, "<STATS>");
    vector<AffineXformStats*>::const_iterator itr = baseclass_stats_.begin(),
        end = baseclass_stats_.end();
    for ( ; itr != end; ++itr)
      (*itr)->Write(out, binary);
    WriteToken(out, binary, "</FMLLRACCS>");
  }
  
  void RegtreeFmllrDiagGmmAccs::Read(std::istream &in, bool binary, bool add) {
    ExpectToken(in, binary, "<FMLLRACCS>");
    ExpectToken(in, binary, "<NUMBASECLASSES>");
    ReadBasicType(in, binary, &num_baseclasses_);
    ExpectToken(in, binary, "<DIMENSION>");
    ReadBasicType(in, binary, &dim_);
    KALDI_ASSERT(num_baseclasses_ > 0 && dim_ > 0);
    baseclass_stats_.resize(num_baseclasses_);
    ExpectToken(in, binary, "<STATS>");
    vector<AffineXformStats*>::iterator itr = baseclass_stats_.begin(),
        end = baseclass_stats_.end();
    for ( ; itr != end; ++itr) {
      *itr = new AffineXformStats();
      (*itr)->Init(dim_, dim_);
      (*itr)->Read(in, binary, add);
    }
    ExpectToken(in, binary, "</FMLLRACCS>");
  }
  
  
  void RegtreeFmllrDiagGmmAccs::Update(const RegressionTree &regtree,
                                const RegtreeFmllrOptions &opts,
                                RegtreeFmllrDiagGmm *out_fmllr,
                                BaseFloat *auxf_impr_out,
                                BaseFloat *tot_t_out) const {
    BaseFloat tot_auxf_impr = 0.0, tot_t = 0.0;
    Matrix<BaseFloat> xform_mat(dim_, dim_+1);
    if (opts.use_regtree) {  // estimate transforms using a regression tree
      vector<AffineXformStats*> regclass_stats;
      vector<int32> base2regclass;
      bool update_xforms = regtree.GatherStats(baseclass_stats_, opts.min_count,
                                               &base2regclass, &regclass_stats);
      out_fmllr->set_bclass2xforms(base2regclass);
      // If update_xforms == true, none should be negative, else all should be -1
      if (update_xforms) {
        out_fmllr->Init(regclass_stats.size(), dim_);
        size_t num_rclass = regclass_stats.size();
        for (size_t rclass_index = 0;
             rclass_index < num_rclass; ++rclass_index) {
          KALDI_ASSERT(regclass_stats[rclass_index]->beta_ >= opts.min_count);
          xform_mat.SetUnit();
          tot_t += regclass_stats[rclass_index]->beta_;
  
          tot_auxf_impr +=
              ComputeFmllrMatrixDiagGmmFull(xform_mat, *(regclass_stats[rclass_index]),
                                            opts.num_iters, &xform_mat);
          
          out_fmllr->SetParameters(xform_mat, rclass_index);
        }
        KALDI_LOG << "Estimated " << num_rclass << " regression classes.";
      } else {
        out_fmllr->Init(1, dim_);  // Use a unit transform at the root.
      }
      DeletePointers(&regclass_stats);
      // end of estimation using regression tree
    } else {  // No regtree: estimate 1 transform per baseclass (if enough count)
      for (int32 bclass_index = 0; bclass_index < num_baseclasses_;
           ++bclass_index) {
        tot_t += baseclass_stats_[bclass_index]->beta_;
      }
  
      out_fmllr->Init(num_baseclasses_, dim_);
      vector<int32> base2regclass(num_baseclasses_);
      for (int32 bclass_index = 0; bclass_index < num_baseclasses_;
           ++bclass_index) {
        if (baseclass_stats_[bclass_index]->beta_ >= opts.min_count) {
          xform_mat.SetUnit();
  
          if (opts.update_type == "full") {
            tot_auxf_impr +=
                ComputeFmllrMatrixDiagGmmFull(xform_mat,
                                              *(baseclass_stats_[bclass_index]),
                                              opts.num_iters, &xform_mat);
          } else if (opts.update_type == "diag")
            tot_auxf_impr +=
                ComputeFmllrMatrixDiagGmmDiagonal(xform_mat,
                                                  *(baseclass_stats_[bclass_index]),
                                                  &xform_mat);
          else if (opts.update_type == "offset")
            tot_auxf_impr +=
                ComputeFmllrMatrixDiagGmmOffset(xform_mat,
                                                *(baseclass_stats_[bclass_index]),
                                                &xform_mat);
          else if (opts.update_type == "none")
            tot_auxf_impr = 0.0;
          else
            KALDI_ERR << "Unknown fMLLR update type " << opts.update_type
                      << ", fmllr-update-type must be one of \"full\"|\"diag\"|\"offset\"|\"none\"";
  
          out_fmllr->SetParameters(xform_mat, bclass_index);
          base2regclass[bclass_index] = bclass_index;
        } else {
          KALDI_WARN << "For baseclass " << (bclass_index) << " count = "
                     << (baseclass_stats_[bclass_index]->beta_) << " < "
                     << opts.min_count << ": not updating FMLLR";
          base2regclass[bclass_index] = -1;
        }
        out_fmllr->set_bclass2xforms(base2regclass);
      }  // end looping over all baseclasses
    }  // end of estimating one transform per baseclass without regtree
    if (auxf_impr_out) *auxf_impr_out = tot_auxf_impr;
    if (tot_t_out) *tot_t_out = tot_t;
  }
  
  
  
  
  }  // namespace kaldi