Blame view
src/transform/regtree-mllr-diag-gmm-test.cc
6.75 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 |
// transform/regtree-mllr-diag-gmm-test.cc // Copyright 2009-2011 Saarland University // Author: Arnab Ghoshal // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #include "util/common-utils.h" #include "gmm/diag-gmm.h" #include "gmm/mle-diag-gmm.h" #include "gmm/mle-am-diag-gmm.h" #include "gmm/model-test-common.h" #include "transform/regtree-mllr-diag-gmm.h" using kaldi::int32; using kaldi::BaseFloat; using kaldi::RegtreeMllrDiagGmmAccs; namespace ut = kaldi::unittest; void TestMllrAccsIO(const kaldi::AmDiagGmm &am_gmm, const kaldi::RegressionTree ®tree, const RegtreeMllrDiagGmmAccs &accs, const kaldi::Matrix<BaseFloat> adapt_data) { // First, non-binary write accs.Write(kaldi::Output("tmpf", false).Stream(), false); kaldi::RegtreeMllrDiagGmm mllr; kaldi::RegtreeMllrOptions opts; opts.min_count = 100; opts.use_regtree = false; accs.Update(regtree, opts, &mllr, NULL, NULL); kaldi::AmDiagGmm am1; am1.CopyFromAmDiagGmm(am_gmm); mllr.TransformModel(regtree, &am1); BaseFloat loglike = 0; int32 npoints = adapt_data.NumRows(); for (int32 j = 0; j < npoints; j++) { loglike += am1.LogLikelihood(0, adapt_data.Row(j)); } KALDI_LOG << "Per-frame loglike after adaptation = " << (loglike/npoints) << " over " << npoints << " frames."; size_t num_comp2 = 1 + kaldi::RandInt(0, 9); // random number of mixtures int32 dim = am_gmm.Dim(); kaldi::DiagGmm gmm2; ut::InitRandDiagGmm(dim, num_comp2, &gmm2); kaldi::Vector<BaseFloat> data(dim); gmm2.Generate(&data); BaseFloat loglike1 = am1.LogLikelihood(0, data); // KALDI_LOG << "LL0 = " << loglike0 << "; LL1 = " << loglike1; KALDI_LOG << "Test ASCII IO."; bool binary_in; kaldi::RegtreeMllrDiagGmm mllr1; RegtreeMllrDiagGmmAccs *accs1 = new RegtreeMllrDiagGmmAccs(); // Non-binary read kaldi::Input ki1("tmpf", &binary_in); accs1->Read(ki1.Stream(), binary_in, false); accs1->Update(regtree, opts, &mllr1, NULL, NULL); delete accs1; kaldi::AmDiagGmm am2; am2.CopyFromAmDiagGmm(am_gmm); mllr.TransformModel(regtree, &am2); BaseFloat loglike2 = am2.LogLikelihood(0, data); // KALDI_LOG << "LL1 = " << loglike1 << "; LL2 = " << loglike2; kaldi::AssertEqual(loglike1, loglike2, 1e-6); kaldi::RegtreeMllrDiagGmm mllr2; // Next, binary write KALDI_LOG << "Test Binary IO."; accs.Write(kaldi::Output("tmpfb", true).Stream(), true); RegtreeMllrDiagGmmAccs *accs2 = new RegtreeMllrDiagGmmAccs(); // Binary read kaldi::Input ki2("tmpfb", &binary_in); accs2->Read(ki2.Stream(), binary_in, false); accs2->Update(regtree, opts, &mllr2, NULL, NULL); delete accs2; kaldi::AmDiagGmm am3; am3.CopyFromAmDiagGmm(am_gmm); mllr.TransformModel(regtree, &am3); BaseFloat loglike3 = am3.LogLikelihood(0, data); // KALDI_LOG << "LL1 = " << loglike1 << "; LL3 = " << loglike3; kaldi::AssertEqual(loglike1, loglike3, 1e-6); unlink("tmpf"); unlink("tmpfb"); } void TestXformMean(const kaldi::AmDiagGmm &am_gmm, const kaldi::RegressionTree ®tree, const RegtreeMllrDiagGmmAccs &accs, const kaldi::Matrix<BaseFloat> adapt_data) { kaldi::RegtreeMllrDiagGmm mllr; kaldi::RegtreeMllrOptions opts; opts.min_count = 100; opts.use_regtree = false; accs.Update(regtree, opts, &mllr, NULL, NULL); kaldi::AmDiagGmm am1; am1.CopyFromAmDiagGmm(am_gmm); mllr.TransformModel(regtree, &am1); kaldi::DiagGmm tmp_pdf; tmp_pdf.CopyFromDiagGmm(am_gmm.GetPdf(0)); kaldi::Matrix<BaseFloat> tmp_means(am_gmm.GetPdf(0).NumGauss(), am_gmm.Dim()); mllr.GetTransformedMeans(regtree, am_gmm, 0, &tmp_means); tmp_pdf.SetInvVarsAndMeans(tmp_pdf.inv_vars(), tmp_means); tmp_pdf.ComputeGconsts(); BaseFloat loglike0 = 0, loglike = 0; int32 npoints = adapt_data.NumRows(); for (int32 j = 0; j < npoints; j++) { loglike0 += am1.LogLikelihood(0, adapt_data.Row(j)); loglike += tmp_pdf.LogLikelihood(adapt_data.Row(j)); } KALDI_LOG << "Per-frame loglike after adaptation = " << (loglike0/npoints) << " over " << npoints << " frames."; // KALDI_LOG << "LL0 = " << loglike0 << "; LL = " << loglike; kaldi::AssertEqual(loglike0, loglike, 1e-6); kaldi::Matrix<BaseFloat> tmp_means2(am_gmm.GetPdf(0).NumGauss(), am_gmm.Dim()); mllr.GetTransformedMeans(regtree, am_gmm, 0, &tmp_means2); tmp_pdf.SetInvVarsAndMeans(tmp_pdf.inv_vars(), tmp_means2); tmp_pdf.ComputeGconsts(); BaseFloat loglike1 = 0; for (int32 j = 0; j < npoints; j++) { loglike1 += tmp_pdf.LogLikelihood(adapt_data.Row(j)); } // KALDI_LOG << "LL = " << loglike << "; LL1 = " << loglike1; kaldi::AssertEqual(loglike, loglike1, 1e-6); } void UnitTestRegtreeMllrDiagGmm() { size_t dim = 1 + kaldi::RandInt(1, 9); // random dimension of the gmm size_t num_comp = 1 + kaldi::RandInt(0, 5); // random number of mixtures kaldi::DiagGmm gmm; ut::InitRandDiagGmm(dim, num_comp, &gmm); kaldi::AmDiagGmm am_gmm; am_gmm.Init(gmm, 1); size_t num_comp2 = 1 + kaldi::RandInt(0, 5); // random number of mixtures kaldi::DiagGmm gmm2; ut::InitRandDiagGmm(dim, num_comp2, &gmm2); int32 npoints = dim*(dim+1)*10 + 500; kaldi::Matrix<BaseFloat> adapt_data(npoints, dim); for (int32 j = 0; j < npoints; j++) { kaldi::SubVector<BaseFloat> row(adapt_data, j); gmm2.Generate(&row); } kaldi::RegressionTree regtree; std::vector<int32> sil_indices; kaldi::Vector<BaseFloat> state_occs(1); state_occs(0) = npoints; regtree.BuildTree(state_occs, sil_indices, am_gmm, 1); int32 num_bclass = regtree.NumBaseclasses(); kaldi::RegtreeMllrDiagGmmAccs accs; BaseFloat loglike = 0; accs.Init(num_bclass, dim); for (int32 j = 0; j < npoints; j++) { loglike += accs.AccumulateForGmm(regtree, am_gmm, adapt_data.Row(j), 0, 1.0); } KALDI_LOG << "Per-frame loglike during accumulations = " << (loglike/npoints) << " over " << npoints << " frames."; TestMllrAccsIO(am_gmm, regtree, accs, adapt_data); TestXformMean(am_gmm, regtree, accs, adapt_data); } int main() { kaldi::g_kaldi_verbose_level = 5; for (int i = 0; i <= 10; i++) UnitTestRegtreeMllrDiagGmm(); std::cout << "Test OK. "; } |