Blame view
src/transform/regtree-mllr-diag-gmm.cc
16.3 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 |
// transform/regtree-mllr-diag-gmm.cc // Copyright 2009-2011 Saarland University; Jan Silovsky // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #include <utility> using std::pair; #include <vector> using std::vector; #include "transform/regtree-mllr-diag-gmm.h" namespace kaldi { void RegtreeMllrDiagGmm::Init(int32 num_xforms, int32 dim) { if (num_xforms == 0) { // empty transform xform_matrices_.clear(); dim_ = 0; // non-zero dimension is meaningless with empty transform num_xforms_ = 0; bclass2xforms_.clear(); } else { KALDI_ASSERT(dim != 0); // if not empty, dim = 0 is meaningless dim_ = dim; num_xforms_ = num_xforms; xform_matrices_.resize(num_xforms); vector< Matrix<BaseFloat> >::iterator xform_itr = xform_matrices_.begin(), xform_itr_end = xform_matrices_.end(); for (; xform_itr != xform_itr_end; ++xform_itr) { xform_itr->Resize(dim, dim+1); xform_itr->SetUnit(); } } } void RegtreeMllrDiagGmm::SetUnit() { vector< Matrix<BaseFloat> >::iterator xform_itr = xform_matrices_.begin(), xform_itr_end = xform_matrices_.end(); for (; xform_itr != xform_itr_end; ++xform_itr) { xform_itr->SetUnit(); } } void RegtreeMllrDiagGmm::TransformModel(const RegressionTree ®tree, AmDiagGmm *am) { KALDI_ASSERT(static_cast<int32>(bclass2xforms_.size()) == regtree.NumBaseclasses()); Vector<BaseFloat> extended_mean(dim_+1), xformed_mean(dim_); for (int32 bclass_index = 0, num_bclasses = regtree.NumBaseclasses(); bclass_index < num_bclasses; ++bclass_index) { int32 xform_index; if ((xform_index = bclass2xforms_[bclass_index]) > -1) { KALDI_ASSERT(xform_index < num_xforms_); const vector< pair<int32, int32> > &bclass = regtree.GetBaseclass(bclass_index); for (vector< pair<int32, int32> >::const_iterator itr = bclass.begin(), end = bclass.end(); itr != end; ++itr) { SubVector<BaseFloat> tmp_mean(extended_mean.Range(0, dim_)); am->GetGaussianMean(itr->first, itr->second, &tmp_mean); extended_mean(dim_) = 1.0; xformed_mean.AddMatVec(1.0, xform_matrices_[xform_index], kNoTrans, extended_mean, 0.0); am->SetGaussianMean(itr->first, itr->second, xformed_mean); } // end iterating over Gaussians in baseclass } // else keep the means untransformed } // end iterating over all baseclasses am->ComputeGconsts(); } void RegtreeMllrDiagGmm::GetTransformedMeans(const RegressionTree ®tree, const AmDiagGmm &am, int32 pdf_index, MatrixBase<BaseFloat> *out) const { KALDI_ASSERT(static_cast<int32>(bclass2xforms_.size()) == regtree.NumBaseclasses()); int32 num_gauss = am.GetPdf(pdf_index).NumGauss(); KALDI_ASSERT(out->NumRows() == num_gauss && out->NumCols() == dim_); Vector<BaseFloat> extended_mean(dim_+1); extended_mean(dim_) = 1.0; for (int32 gauss_index = 0; gauss_index < num_gauss; gauss_index++) { int32 bclass_index = regtree.Gauss2BaseclassId(pdf_index, gauss_index); int32 xform_index = bclass2xforms_[bclass_index]; if (xform_index > -1) { // use a transform KALDI_ASSERT(xform_index < num_xforms_); SubVector<BaseFloat> tmp_mean(extended_mean.Range(0, dim_)); am.GetGaussianMean(pdf_index, gauss_index, &tmp_mean); SubVector<BaseFloat> out_row(out->Row(gauss_index)); out_row.AddMatVec(1.0, xform_matrices_[xform_index], kNoTrans, extended_mean, 0.0); } else { // Copy untransformed mean SubVector<BaseFloat> out_row(out->Row(gauss_index)); am.GetGaussianMean(pdf_index, gauss_index, &out_row); } } } void RegtreeMllrDiagGmm::Write(std::ostream &out, bool binary) const { WriteToken(out, binary, "<MLLRXFORM>"); WriteToken(out, binary, "<NUMXFORMS>"); WriteBasicType(out, binary, num_xforms_); WriteToken(out, binary, "<DIMENSION>"); WriteBasicType(out, binary, dim_); vector< Matrix<BaseFloat> >::const_iterator xform_itr = xform_matrices_.begin(), xform_itr_end = xform_matrices_.end(); for (; xform_itr != xform_itr_end; ++xform_itr) { WriteToken(out, binary, "<XFORM>"); xform_itr->Write(out, binary); } WriteToken(out, binary, "<BCLASS2XFORMS>"); WriteIntegerVector(out, binary, bclass2xforms_); WriteToken(out, binary, "</MLLRXFORM>"); } void RegtreeMllrDiagGmm::Read(std::istream &in, bool binary) { ExpectToken(in, binary, "<MLLRXFORM>"); ExpectToken(in, binary, "<NUMXFORMS>"); ReadBasicType(in, binary, &num_xforms_); ExpectToken(in, binary, "<DIMENSION>"); ReadBasicType(in, binary, &dim_); KALDI_ASSERT(num_xforms_ >= 0 && dim_ >= 0); // can be 0 for empty xform xform_matrices_.resize(num_xforms_); vector< Matrix<BaseFloat> >::iterator xform_itr = xform_matrices_.begin(), xform_itr_end = xform_matrices_.end(); for (; xform_itr != xform_itr_end; ++xform_itr) { ExpectToken(in, binary, "<XFORM>"); xform_itr->Read(in, binary); KALDI_ASSERT(xform_itr->NumRows() == (xform_itr->NumCols() - 1) && xform_itr->NumRows() == dim_); } ExpectToken(in, binary, "<BCLASS2XFORMS>"); ReadIntegerVector(in, binary, &bclass2xforms_); ExpectToken(in, binary, "</MLLRXFORM>"); } // ************************************************************************ void RegtreeMllrDiagGmmAccs::Init(int32 num_bclass, int32 dim) { if (num_bclass == 0) { // empty stats DeletePointers(&baseclass_stats_); baseclass_stats_.clear(); num_baseclasses_ = 0; dim_ = 0; // non-zero dimension is meaningless in empty stats } else { KALDI_ASSERT(dim != 0); // if not empty, dim = 0 is meaningless num_baseclasses_ = num_bclass; dim_ = dim; baseclass_stats_.resize(num_baseclasses_); for (vector<AffineXformStats*>::iterator it = baseclass_stats_.begin(), end = baseclass_stats_.end(); it != end; ++it) { *it = new AffineXformStats(); (*it)->Init(dim_, dim_); } } } void RegtreeMllrDiagGmmAccs::SetZero() { for (vector<AffineXformStats*>::iterator it = baseclass_stats_.begin(), end = baseclass_stats_.end(); it != end; ++it) { (*it)->SetZero(); } } BaseFloat RegtreeMllrDiagGmmAccs::AccumulateForGmm( const RegressionTree ®tree, const AmDiagGmm &am, const VectorBase<BaseFloat> &data, int32 pdf_index, BaseFloat weight) { const DiagGmm &pdf = am.GetPdf(pdf_index); int32 num_comp = static_cast<int32>(pdf.NumGauss()); Vector<BaseFloat> posterior(num_comp); BaseFloat loglike = pdf.ComponentPosteriors(data, &posterior); posterior.Scale(weight); Vector<double> posterior_d(posterior); Vector<double> data_d(data); Vector<double> inv_var_x(dim_); Vector<double> extended_mean(dim_+1); SpMatrix<double> mean_scatter(dim_+1); for (int32 m = 0; m < num_comp; m++) { unsigned bclass = regtree.Gauss2BaseclassId(pdf_index, m); inv_var_x.CopyFromVec(pdf.inv_vars().Row(m)); inv_var_x.MulElements(data_d); // Using SubVector to stop compiler warning SubVector<double> tmp_mean(extended_mean, 0, dim_); pdf.GetComponentMean(m, &tmp_mean); // modifies extended_mean extended_mean(dim_) = 1.0; mean_scatter.SetZero(); mean_scatter.AddVec2(1.0, extended_mean); baseclass_stats_[bclass]->beta_ += posterior_d(m); baseclass_stats_[bclass]->K_.AddVecVec(posterior_d(m), inv_var_x, extended_mean); vector< SpMatrix<double> > &G = baseclass_stats_[bclass]->G_; for (int32 d = 0; d < dim_; d++) G[d].AddSp((posterior_d(m) * pdf.inv_vars()(m, d)), mean_scatter); } return loglike; } void RegtreeMllrDiagGmmAccs::AccumulateForGaussian( const RegressionTree ®tree, const AmDiagGmm &am, const VectorBase<BaseFloat> &data, int32 pdf_index, int32 gauss_index, BaseFloat weight) { const DiagGmm &pdf = am.GetPdf(pdf_index); Vector<double> data_d(data); Vector<double> inv_var_x(dim_); Vector<double> extended_mean(dim_+1); double weight_d = static_cast<double>(weight); unsigned bclass = regtree.Gauss2BaseclassId(pdf_index, gauss_index); inv_var_x.CopyFromVec(pdf.inv_vars().Row(gauss_index)); inv_var_x.MulElements(data_d); // Using SubVector to stop compiler warning SubVector<double> tmp_mean(extended_mean, 0, dim_); pdf.GetComponentMean(gauss_index, &tmp_mean); // modifies extended_mean extended_mean(dim_) = 1.0; SpMatrix<double> mean_scatter(dim_+1); mean_scatter.AddVec2(1.0, extended_mean); baseclass_stats_[bclass]->beta_ += weight_d; baseclass_stats_[bclass]->K_.AddVecVec(weight_d, inv_var_x, extended_mean); vector< SpMatrix<double> > &G = baseclass_stats_[bclass]->G_; for (int32 d = 0; d < dim_; d++) G[d].AddSp((weight_d * pdf.inv_vars()(gauss_index, d)), mean_scatter); } void RegtreeMllrDiagGmmAccs::Write(std::ostream &out, bool binary) const { WriteToken(out, binary, "<MLLRACCS>"); WriteToken(out, binary, "<NUMBASECLASSES>"); WriteBasicType(out, binary, num_baseclasses_); WriteToken(out, binary, "<DIMENSION>"); WriteBasicType(out, binary, dim_); WriteToken(out, binary, "<STATS>"); vector<AffineXformStats*>::const_iterator itr = baseclass_stats_.begin(), end = baseclass_stats_.end(); for ( ; itr != end; ++itr) (*itr)->Write(out, binary); WriteToken(out, binary, "</MLLRACCS>"); } void RegtreeMllrDiagGmmAccs::Read(std::istream &in, bool binary, bool add) { ExpectToken(in, binary, "<MLLRACCS>"); ExpectToken(in, binary, "<NUMBASECLASSES>"); ReadBasicType(in, binary, &num_baseclasses_); ExpectToken(in, binary, "<DIMENSION>"); ReadBasicType(in, binary, &dim_); KALDI_ASSERT(num_baseclasses_ > 0 && dim_ > 0); baseclass_stats_.resize(num_baseclasses_); ExpectToken(in, binary, "<STATS>"); vector<AffineXformStats*>::iterator itr = baseclass_stats_.begin(), end = baseclass_stats_.end(); for ( ; itr != end; ++itr) { *itr = new AffineXformStats(); (*itr)->Init(dim_, dim_); (*itr)->Read(in, binary, add); } ExpectToken(in, binary, "</MLLRACCS>"); } static void ComputeMllrMatrix(const Matrix<double> &K, const vector< SpMatrix<double> > &G, Matrix<BaseFloat> *out) { int32 dim = G.size(); Matrix<double> tmp_out(dim, dim+1); for (int32 d = 0; d < dim; d++) { if (G[d].Cond() > 1.0e+9) { KALDI_WARN << "Dim " << d << ": Badly conditioned stats. Setting MLLR " << "transform to unit."; tmp_out.SetUnit(); break; } SpMatrix<double> inv_g(G[d]); // KALDI_LOG << "Dim " << d << ": G: max = " << inv_g.Max() << ", min = " // << inv_g.Min() << ", log det = " << inv_g.LogDet(NULL) // << ", cond = " << inv_g.Cond(); inv_g.Invert(); // KALDI_LOG << "Inv G: max = " << inv_g.Max() << ", min = " << inv_g.Min() // << ", log det = " << inv_g.LogDet(NULL) << ", cond = " // << inv_g.Cond(); tmp_out.Row(d).AddSpVec(1.0, inv_g, K.Row(d), 0.0); } out->CopyFromMat(tmp_out, kNoTrans); } static BaseFloat MllrAuxFunction(const Matrix<BaseFloat> &xform, const AffineXformStats &stats) { int32 dim = stats.G_.size(); Matrix<double> xform_d(xform); Vector<double> xform_row_g(dim + 1); SubMatrix<double> A(xform_d, 0, dim, 0, dim); double obj = TraceMatMat(xform_d, stats.K_, kTrans); for (int32 d = 0; d < dim; d++) { xform_row_g.AddSpVec(1.0, stats.G_[d], xform_d.Row(d), 0.0); obj -= 0.5 * VecVec(xform_row_g, xform_d.Row(d)); } return obj; } void RegtreeMllrDiagGmmAccs::Update(const RegressionTree ®tree, const RegtreeMllrOptions &opts, RegtreeMllrDiagGmm *out_mllr, BaseFloat *auxf_impr, BaseFloat *t) const { BaseFloat tot_auxf_impr = 0, tot_t = 0; Matrix<BaseFloat> xform_mat(dim_, dim_ + 1); if (opts.use_regtree) { // estimate transforms using a regression tree vector<AffineXformStats*> regclass_stats; vector<int32> base2regclass; bool update_xforms = regtree.GatherStats(baseclass_stats_, opts.min_count, &base2regclass, ®class_stats); out_mllr->set_bclass2xforms(base2regclass); // If update_xforms == true, none should be negative, else all should be -1 if (update_xforms) { out_mllr->Init(regclass_stats.size(), dim_); for (int32 rclass_index = 0, num_rclass = regclass_stats.size(); rclass_index < num_rclass; ++rclass_index) { KALDI_ASSERT(regclass_stats[rclass_index]->beta_ >= opts.min_count); xform_mat.SetUnit(); BaseFloat obj_old = MllrAuxFunction(xform_mat, *(regclass_stats[rclass_index])); ComputeMllrMatrix(regclass_stats[rclass_index]->K_, regclass_stats[rclass_index]->G_, &xform_mat); out_mllr->SetParameters(xform_mat, rclass_index); BaseFloat obj_new = MllrAuxFunction(xform_mat, *(regclass_stats[rclass_index])); KALDI_LOG << "MLLR: regclass " << (rclass_index) << ": Objective function impr per frame is " << ((obj_new - obj_old)/regclass_stats[rclass_index]->beta_) << " over " << regclass_stats[rclass_index]->beta_ << " frames."; KALDI_ASSERT(obj_new >= obj_old - (std::abs(obj_new)+std::abs(obj_old))*1.0e-05); tot_t += regclass_stats[rclass_index]->beta_; tot_auxf_impr += obj_new - obj_old; } } else { out_mllr->Init(1, dim_); // Use a unit transform at the root. } DeletePointers(®class_stats); // end of estimation using regression tree } else { // estimate 1 transform per baseclass (if enough count) out_mllr->Init(num_baseclasses_, dim_); vector<int32> base2xforms(num_baseclasses_, -1); for (int32 bclass_index = 0; bclass_index < num_baseclasses_; ++bclass_index) { if (baseclass_stats_[bclass_index]->beta_ > opts.min_count) { base2xforms[bclass_index] = bclass_index; xform_mat.SetUnit(); BaseFloat obj_old = MllrAuxFunction(xform_mat, *(baseclass_stats_[bclass_index])); ComputeMllrMatrix(baseclass_stats_[bclass_index]->K_, baseclass_stats_[bclass_index]->G_, &xform_mat); out_mllr->SetParameters(xform_mat, bclass_index); BaseFloat obj_new = MllrAuxFunction(xform_mat, *(baseclass_stats_[bclass_index])); KALDI_LOG << "MLLR: base-class " << (bclass_index) << ": Auxiliary function impr per frame is " << ((obj_new-obj_old)/baseclass_stats_[bclass_index]->beta_); KALDI_ASSERT(obj_new >= obj_old - (std::abs(obj_new)+std::abs(obj_old))*1.0e-05); tot_t += baseclass_stats_[bclass_index]->beta_; tot_auxf_impr += obj_new - obj_old; } else { KALDI_WARN << "For baseclass " << (bclass_index) << " count = " << (baseclass_stats_[bclass_index]->beta_) << " < " << opts.min_count << ": not updating MLLR"; tot_t += baseclass_stats_[bclass_index]->beta_; } } // end looping over all baseclasses out_mllr->set_bclass2xforms(base2xforms); } // end of estimating one transform per baseclass if (auxf_impr != NULL) *auxf_impr = tot_auxf_impr; if (t != NULL) *t = tot_t; } } // namespace kaldi |