Blame view
src/util/edit-distance-inl.h
6.47 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 |
// util/edit-distance-inl.h // Copyright 2009-2011 Microsoft Corporation; Haihua Xu; Yanmin Qian // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // http://www.apache.org/licenses/LICENSE-2.0 // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #ifndef KALDI_UTIL_EDIT_DISTANCE_INL_H_ #define KALDI_UTIL_EDIT_DISTANCE_INL_H_ #include <algorithm> #include <utility> #include <vector> #include "util/stl-utils.h" namespace kaldi { template<class T> int32 LevenshteinEditDistance(const std::vector<T> &a, const std::vector<T> &b) { // Algorithm: // write A and B for the sequences, with elements a_0 .. // let |A| = M and |B| = N be the lengths, and have // elements a_0 ... a_{M-1} and b_0 ... b_{N-1}. // We are computing the recursion // E(m, n) = min( E(m-1, n-1) + (1-delta(a_{m-1}, b_{n-1})), // E(m-1, n) + 1, // E(m, n-1) + 1). // where E(m, n) is defined for m = 0..M and n = 0..N and out-of- // bounds quantities are considered to be infinity (i.e. the // recursion does not visit them). // We do this computation using a vector e of size N+1. // The outer iterations range over m = 0..M. int M = a.size(), N = b.size(); std::vector<int32> e(N+1); std::vector<int32> e_tmp(N+1); // initialize e. for (size_t i = 0; i < e.size(); i++) e[i] = i; for (int32 m = 1; m <= M; m++) { // computing E(m, .) from E(m-1, .) // handle special case n = 0: e_tmp[0] = e[0] + 1; for (int32 n = 1; n <= N; n++) { int32 term1 = e[n-1] + (a[m-1] == b[n-1] ? 0 : 1); int32 term2 = e[n] + 1; int32 term3 = e_tmp[n-1] + 1; e_tmp[n] = std::min(term1, std::min(term2, term3)); } e = e_tmp; } return e.back(); } // struct error_stats { int32 ins_num; int32 del_num; int32 sub_num; int32 total_cost; // minimum total cost to the current alignment. }; // Note that both hyp and ref should not contain noise word in // the following implementation. template<class T> int32 LevenshteinEditDistance(const std::vector<T> &ref, const std::vector<T> &hyp, int32 *ins, int32 *del, int32 *sub) { // temp sequence to remember error type and stats. std::vector<error_stats> e(ref.size()+1); std::vector<error_stats> cur_e(ref.size()+1); // initialize the first hypothesis aligned to the reference at each // position:[hyp_index =0][ref_index] for (size_t i =0; i < e.size(); i ++) { e[i].ins_num = 0; e[i].sub_num = 0; e[i].del_num = i; e[i].total_cost = i; } // for other alignments for (size_t hyp_index = 1; hyp_index <= hyp.size(); hyp_index ++) { cur_e[0] = e[0]; cur_e[0].ins_num++; cur_e[0].total_cost++; for (size_t ref_index = 1; ref_index <= ref.size(); ref_index ++) { int32 ins_err = e[ref_index].total_cost + 1; int32 del_err = cur_e[ref_index-1].total_cost + 1; int32 sub_err = e[ref_index-1].total_cost; if (hyp[hyp_index-1] != ref[ref_index-1]) sub_err++; if (sub_err < ins_err && sub_err < del_err) { cur_e[ref_index] =e[ref_index-1]; if (hyp[hyp_index-1] != ref[ref_index-1]) cur_e[ref_index].sub_num++; // substitution error should be increased cur_e[ref_index].total_cost = sub_err; } else if (del_err < ins_err) { cur_e[ref_index] = cur_e[ref_index-1]; cur_e[ref_index].total_cost = del_err; cur_e[ref_index].del_num++; // deletion number is increased. } else { cur_e[ref_index] = e[ref_index]; cur_e[ref_index].total_cost = ins_err; cur_e[ref_index].ins_num++; // insertion number is increased. } } e = cur_e; // alternate for the next recursion. } size_t ref_index = e.size()-1; *ins = e[ref_index].ins_num, *del = e[ref_index].del_num, *sub = e[ref_index].sub_num; return e[ref_index].total_cost; } template<class T> int32 LevenshteinAlignment(const std::vector<T> &a, const std::vector<T> &b, T eps_symbol, std::vector<std::pair<T, T> > *output) { // Check inputs: { KALDI_ASSERT(output != NULL); for (size_t i = 0; i < a.size(); i++) KALDI_ASSERT(a[i] != eps_symbol); for (size_t i = 0; i < b.size(); i++) KALDI_ASSERT(b[i] != eps_symbol); } output->clear(); // This is very memory-inefficiently implemented using a vector of vectors. size_t M = a.size(), N = b.size(); size_t m, n; std::vector<std::vector<int32> > e(M+1); for (m = 0; m <=M; m++) e[m].resize(N+1); for (n = 0; n <= N; n++) e[0][n] = n; for (m = 1; m <= M; m++) { e[m][0] = e[m-1][0] + 1; for (n = 1; n <= N; n++) { int32 sub_or_ok = e[m-1][n-1] + (a[m-1] == b[n-1] ? 0 : 1); int32 del = e[m-1][n] + 1; // assumes a == ref, b == hyp. int32 ins = e[m][n-1] + 1; e[m][n] = std::min(sub_or_ok, std::min(del, ins)); } } // get time-reversed output first: trace back. m = M; n = N; while (m != 0 || n != 0) { size_t last_m, last_n; if (m == 0) { last_m = m; last_n = n-1; } else if (n == 0) { last_m = m-1; last_n = n; } else { int32 sub_or_ok = e[m-1][n-1] + (a[m-1] == b[n-1] ? 0 : 1); int32 del = e[m-1][n] + 1; // assumes a == ref, b == hyp. int32 ins = e[m][n-1] + 1; // choose sub_or_ok if all else equal. if (sub_or_ok <= std::min(del, ins)) { last_m = m-1; last_n = n-1; } else { if (del <= ins) { // choose del over ins if equal. last_m = m-1; last_n = n; } else { last_m = m; last_n = n-1; } } } T a_sym, b_sym; a_sym = (last_m == m ? eps_symbol : a[last_m]); b_sym = (last_n == n ? eps_symbol : b[last_n]); output->push_back(std::make_pair(a_sym, b_sym)); m = last_m; n = last_n; } ReverseVector(output); return e[M][N]; } } // end namespace kaldi #endif // KALDI_UTIL_EDIT_DISTANCE_INL_H_ |