Blame view
tools/cub-1.8.0/cub/block/block_reduce.cuh
24.7 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 |
/****************************************************************************** * Copyright (c) 2011, Duane Merrill. All rights reserved. * Copyright (c) 2011-2018, NVIDIA CORPORATION. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of the NVIDIA CORPORATION nor the * names of its contributors may be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * ******************************************************************************/ /** * \file * The cub::BlockReduce class provides [<em>collective</em>](index.html#sec0) methods for computing a parallel reduction of items partitioned across a CUDA thread block. */ #pragma once #include "specializations/block_reduce_raking.cuh" #include "specializations/block_reduce_raking_commutative_only.cuh" #include "specializations/block_reduce_warp_reductions.cuh" #include "../util_ptx.cuh" #include "../util_type.cuh" #include "../thread/thread_operators.cuh" #include "../util_namespace.cuh" /// Optional outer namespace(s) CUB_NS_PREFIX /// CUB namespace namespace cub { /****************************************************************************** * Algorithmic variants ******************************************************************************/ /** * BlockReduceAlgorithm enumerates alternative algorithms for parallel * reduction across a CUDA thread block. */ enum BlockReduceAlgorithm { /** * \par Overview * An efficient "raking" reduction algorithm that only supports commutative * reduction operators (true for most operations, e.g., addition). * * \par * Execution is comprised of three phases: * -# Upsweep sequential reduction in registers (if threads contribute more * than one input each). Threads in warps other than the first warp place * their partial reductions into shared memory. * -# Upsweep sequential reduction in shared memory. Threads within the first * warp continue to accumulate by raking across segments of shared partial reductions * -# A warp-synchronous Kogge-Stone style reduction within the raking warp. * * \par * \image html block_reduce.png * <div class="centercaption">\p BLOCK_REDUCE_RAKING data flow for a hypothetical 16-thread thread block and 4-thread raking warp.</div> * * \par Performance Considerations * - This variant performs less communication than BLOCK_REDUCE_RAKING_NON_COMMUTATIVE * and is preferable when the reduction operator is commutative. This variant * applies fewer reduction operators than BLOCK_REDUCE_WARP_REDUCTIONS, and can provide higher overall * throughput across the GPU when suitably occupied. However, turn-around latency may be * higher than to BLOCK_REDUCE_WARP_REDUCTIONS and thus less-desirable * when the GPU is under-occupied. */ BLOCK_REDUCE_RAKING_COMMUTATIVE_ONLY, /** * \par Overview * An efficient "raking" reduction algorithm that supports commutative * (e.g., addition) and non-commutative (e.g., string concatenation) reduction * operators. \blocked. * * \par * Execution is comprised of three phases: * -# Upsweep sequential reduction in registers (if threads contribute more * than one input each). Each thread then places the partial reduction * of its item(s) into shared memory. * -# Upsweep sequential reduction in shared memory. Threads within a * single warp rake across segments of shared partial reductions. * -# A warp-synchronous Kogge-Stone style reduction within the raking warp. * * \par * \image html block_reduce.png * <div class="centercaption">\p BLOCK_REDUCE_RAKING data flow for a hypothetical 16-thread thread block and 4-thread raking warp.</div> * * \par Performance Considerations * - This variant performs more communication than BLOCK_REDUCE_RAKING * and is only preferable when the reduction operator is non-commutative. This variant * applies fewer reduction operators than BLOCK_REDUCE_WARP_REDUCTIONS, and can provide higher overall * throughput across the GPU when suitably occupied. However, turn-around latency may be * higher than to BLOCK_REDUCE_WARP_REDUCTIONS and thus less-desirable * when the GPU is under-occupied. */ BLOCK_REDUCE_RAKING, /** * \par Overview * A quick "tiled warp-reductions" reduction algorithm that supports commutative * (e.g., addition) and non-commutative (e.g., string concatenation) reduction * operators. * * \par * Execution is comprised of four phases: * -# Upsweep sequential reduction in registers (if threads contribute more * than one input each). Each thread then places the partial reduction * of its item(s) into shared memory. * -# Compute a shallow, but inefficient warp-synchronous Kogge-Stone style * reduction within each warp. * -# A propagation phase where the warp reduction outputs in each warp are * updated with the aggregate from each preceding warp. * * \par * \image html block_scan_warpscans.png * <div class="centercaption">\p BLOCK_REDUCE_WARP_REDUCTIONS data flow for a hypothetical 16-thread thread block and 4-thread raking warp.</div> * * \par Performance Considerations * - This variant applies more reduction operators than BLOCK_REDUCE_RAKING * or BLOCK_REDUCE_RAKING_NON_COMMUTATIVE, which may result in lower overall * throughput across the GPU. However turn-around latency may be lower and * thus useful when the GPU is under-occupied. */ BLOCK_REDUCE_WARP_REDUCTIONS, }; /****************************************************************************** * Block reduce ******************************************************************************/ /** * \brief The BlockReduce class provides [<em>collective</em>](index.html#sec0) methods for computing a parallel reduction of items partitioned across a CUDA thread block. ![](reduce_logo.png) * \ingroup BlockModule * * \tparam T Data type being reduced * \tparam BLOCK_DIM_X The thread block length in threads along the X dimension * \tparam ALGORITHM <b>[optional]</b> cub::BlockReduceAlgorithm enumerator specifying the underlying algorithm to use (default: cub::BLOCK_REDUCE_WARP_REDUCTIONS) * \tparam BLOCK_DIM_Y <b>[optional]</b> The thread block length in threads along the Y dimension (default: 1) * \tparam BLOCK_DIM_Z <b>[optional]</b> The thread block length in threads along the Z dimension (default: 1) * \tparam PTX_ARCH <b>[optional]</b> \ptxversion * * \par Overview * - A <a href="http://en.wikipedia.org/wiki/Reduce_(higher-order_function)"><em>reduction</em></a> (or <em>fold</em>) * uses a binary combining operator to compute a single aggregate from a list of input elements. * - \rowmajor * - BlockReduce can be optionally specialized by algorithm to accommodate different latency/throughput workload profiles: * -# <b>cub::BLOCK_REDUCE_RAKING_COMMUTATIVE_ONLY</b>. An efficient "raking" reduction algorithm that only supports commutative reduction operators. [More...](\ref cub::BlockReduceAlgorithm) * -# <b>cub::BLOCK_REDUCE_RAKING</b>. An efficient "raking" reduction algorithm that supports commutative and non-commutative reduction operators. [More...](\ref cub::BlockReduceAlgorithm) * -# <b>cub::BLOCK_REDUCE_WARP_REDUCTIONS</b>. A quick "tiled warp-reductions" reduction algorithm that supports commutative and non-commutative reduction operators. [More...](\ref cub::BlockReduceAlgorithm) * * \par Performance Considerations * - \granularity * - Very efficient (only one synchronization barrier). * - Incurs zero bank conflicts for most types * - Computation is slightly more efficient (i.e., having lower instruction overhead) for: * - Summation (<b><em>vs.</em></b> generic reduction) * - \p BLOCK_THREADS is a multiple of the architecture's warp size * - Every thread has a valid input (i.e., full <b><em>vs.</em></b> partial-tiles) * - See cub::BlockReduceAlgorithm for performance details regarding algorithmic alternatives * * \par A Simple Example * \blockcollective{BlockReduce} * \par * The code snippet below illustrates a sum reduction of 512 integer items that * are partitioned in a [<em>blocked arrangement</em>](index.html#sec5sec3) across 128 threads * where each thread owns 4 consecutive items. * \par * \code * #include <cub/cub.cuh> // or equivalently <cub/block/block_reduce.cuh> * * __global__ void ExampleKernel(...) * { * // Specialize BlockReduce for a 1D block of 128 threads on type int * typedef cub::BlockReduce<int, 128> BlockReduce; * * // Allocate shared memory for BlockReduce * __shared__ typename BlockReduce::TempStorage temp_storage; * * // Obtain a segment of consecutive items that are blocked across threads * int thread_data[4]; * ... * * // Compute the block-wide sum for thread0 * int aggregate = BlockReduce(temp_storage).Sum(thread_data); * * \endcode * */ template < typename T, int BLOCK_DIM_X, BlockReduceAlgorithm ALGORITHM = BLOCK_REDUCE_WARP_REDUCTIONS, int BLOCK_DIM_Y = 1, int BLOCK_DIM_Z = 1, int PTX_ARCH = CUB_PTX_ARCH> class BlockReduce { private: /****************************************************************************** * Constants and type definitions ******************************************************************************/ /// Constants enum { /// The thread block size in threads BLOCK_THREADS = BLOCK_DIM_X * BLOCK_DIM_Y * BLOCK_DIM_Z, }; typedef BlockReduceWarpReductions<T, BLOCK_DIM_X, BLOCK_DIM_Y, BLOCK_DIM_Z, PTX_ARCH> WarpReductions; typedef BlockReduceRakingCommutativeOnly<T, BLOCK_DIM_X, BLOCK_DIM_Y, BLOCK_DIM_Z, PTX_ARCH> RakingCommutativeOnly; typedef BlockReduceRaking<T, BLOCK_DIM_X, BLOCK_DIM_Y, BLOCK_DIM_Z, PTX_ARCH> Raking; /// Internal specialization type typedef typename If<(ALGORITHM == BLOCK_REDUCE_WARP_REDUCTIONS), WarpReductions, typename If<(ALGORITHM == BLOCK_REDUCE_RAKING_COMMUTATIVE_ONLY), RakingCommutativeOnly, Raking>::Type>::Type InternalBlockReduce; // BlockReduceRaking /// Shared memory storage layout type for BlockReduce typedef typename InternalBlockReduce::TempStorage _TempStorage; /****************************************************************************** * Utility methods ******************************************************************************/ /// Internal storage allocator __device__ __forceinline__ _TempStorage& PrivateStorage() { __shared__ _TempStorage private_storage; return private_storage; } /****************************************************************************** * Thread fields ******************************************************************************/ /// Shared storage reference _TempStorage &temp_storage; /// Linear thread-id unsigned int linear_tid; public: /// \smemstorage{BlockReduce} struct TempStorage : Uninitialized<_TempStorage> {}; /******************************************************************//** * ame Collective constructors *********************************************************************/ //@{ /** * \brief Collective constructor using a private static allocation of shared memory as temporary storage. */ __device__ __forceinline__ BlockReduce() : temp_storage(PrivateStorage()), linear_tid(RowMajorTid(BLOCK_DIM_X, BLOCK_DIM_Y, BLOCK_DIM_Z)) {} /** * \brief Collective constructor using the specified memory allocation as temporary storage. */ __device__ __forceinline__ BlockReduce( TempStorage &temp_storage) ///< [in] Reference to memory allocation having layout type TempStorage : temp_storage(temp_storage.Alias()), linear_tid(RowMajorTid(BLOCK_DIM_X, BLOCK_DIM_Y, BLOCK_DIM_Z)) {} //@} end member group /******************************************************************//** * ame Generic reductions *********************************************************************/ //@{ /** * \brief Computes a block-wide reduction for thread<sub>0</sub> using the specified binary reduction functor. Each thread contributes one input element. * * \par * - The return value is undefined in threads other than thread<sub>0</sub>. * - \rowmajor * - \smemreuse * * \par Snippet * The code snippet below illustrates a max reduction of 128 integer items that * are partitioned across 128 threads. * \par * \code * #include <cub/cub.cuh> // or equivalently <cub/block/block_reduce.cuh> * * __global__ void ExampleKernel(...) * { * // Specialize BlockReduce for a 1D block of 128 threads on type int * typedef cub::BlockReduce<int, 128> BlockReduce; * * // Allocate shared memory for BlockReduce * __shared__ typename BlockReduce::TempStorage temp_storage; * * // Each thread obtains an input item * int thread_data; * ... * * // Compute the block-wide max for thread0 * int aggregate = BlockReduce(temp_storage).Reduce(thread_data, cub::Max()); * * \endcode * * \tparam ReductionOp <b>[inferred]</b> Binary reduction functor type having member <tt>T operator()(const T &a, const T &b)</tt> */ template <typename ReductionOp> __device__ __forceinline__ T Reduce( T input, ///< [in] Calling thread's input ReductionOp reduction_op) ///< [in] Binary reduction functor { return InternalBlockReduce(temp_storage).template Reduce<true>(input, BLOCK_THREADS, reduction_op); } /** * \brief Computes a block-wide reduction for thread<sub>0</sub> using the specified binary reduction functor. Each thread contributes an array of consecutive input elements. * * \par * - The return value is undefined in threads other than thread<sub>0</sub>. * - \granularity * - \smemreuse * * \par Snippet * The code snippet below illustrates a max reduction of 512 integer items that * are partitioned in a [<em>blocked arrangement</em>](index.html#sec5sec3) across 128 threads * where each thread owns 4 consecutive items. * \par * \code * #include <cub/cub.cuh> // or equivalently <cub/block/block_reduce.cuh> * * __global__ void ExampleKernel(...) * { * // Specialize BlockReduce for a 1D block of 128 threads on type int * typedef cub::BlockReduce<int, 128> BlockReduce; * * // Allocate shared memory for BlockReduce * __shared__ typename BlockReduce::TempStorage temp_storage; * * // Obtain a segment of consecutive items that are blocked across threads * int thread_data[4]; * ... * * // Compute the block-wide max for thread0 * int aggregate = BlockReduce(temp_storage).Reduce(thread_data, cub::Max()); * * \endcode * * \tparam ITEMS_PER_THREAD <b>[inferred]</b> The number of consecutive items partitioned onto each thread. * \tparam ReductionOp <b>[inferred]</b> Binary reduction functor type having member <tt>T operator()(const T &a, const T &b)</tt> */ template < int ITEMS_PER_THREAD, typename ReductionOp> __device__ __forceinline__ T Reduce( T (&inputs)[ITEMS_PER_THREAD], ///< [in] Calling thread's input segment ReductionOp reduction_op) ///< [in] Binary reduction functor { // Reduce partials T partial = internal::ThreadReduce(inputs, reduction_op); return Reduce(partial, reduction_op); } /** * \brief Computes a block-wide reduction for thread<sub>0</sub> using the specified binary reduction functor. The first \p num_valid threads each contribute one input element. * * \par * - The return value is undefined in threads other than thread<sub>0</sub>. * - \rowmajor * - \smemreuse * * \par Snippet * The code snippet below illustrates a max reduction of a partially-full tile of integer items that * are partitioned across 128 threads. * \par * \code * #include <cub/cub.cuh> // or equivalently <cub/block/block_reduce.cuh> * * __global__ void ExampleKernel(int num_valid, ...) * { * // Specialize BlockReduce for a 1D block of 128 threads on type int * typedef cub::BlockReduce<int, 128> BlockReduce; * * // Allocate shared memory for BlockReduce * __shared__ typename BlockReduce::TempStorage temp_storage; * * // Each thread obtains an input item * int thread_data; * if (threadIdx.x < num_valid) thread_data = ... * * // Compute the block-wide max for thread0 * int aggregate = BlockReduce(temp_storage).Reduce(thread_data, cub::Max(), num_valid); * * \endcode * * \tparam ReductionOp <b>[inferred]</b> Binary reduction functor type having member <tt>T operator()(const T &a, const T &b)</tt> */ template <typename ReductionOp> __device__ __forceinline__ T Reduce( T input, ///< [in] Calling thread's input ReductionOp reduction_op, ///< [in] Binary reduction functor int num_valid) ///< [in] Number of threads containing valid elements (may be less than BLOCK_THREADS) { // Determine if we scan skip bounds checking if (num_valid >= BLOCK_THREADS) { return InternalBlockReduce(temp_storage).template Reduce<true>(input, num_valid, reduction_op); } else { return InternalBlockReduce(temp_storage).template Reduce<false>(input, num_valid, reduction_op); } } //@} end member group /******************************************************************//** * ame Summation reductions *********************************************************************/ //@{ /** * \brief Computes a block-wide reduction for thread<sub>0</sub> using addition (+) as the reduction operator. Each thread contributes one input element. * * \par * - The return value is undefined in threads other than thread<sub>0</sub>. * - \rowmajor * - \smemreuse * * \par Snippet * The code snippet below illustrates a sum reduction of 128 integer items that * are partitioned across 128 threads. * \par * \code * #include <cub/cub.cuh> // or equivalently <cub/block/block_reduce.cuh> * * __global__ void ExampleKernel(...) * { * // Specialize BlockReduce for a 1D block of 128 threads on type int * typedef cub::BlockReduce<int, 128> BlockReduce; * * // Allocate shared memory for BlockReduce * __shared__ typename BlockReduce::TempStorage temp_storage; * * // Each thread obtains an input item * int thread_data; * ... * * // Compute the block-wide sum for thread0 * int aggregate = BlockReduce(temp_storage).Sum(thread_data); * * \endcode * */ __device__ __forceinline__ T Sum( T input) ///< [in] Calling thread's input { return InternalBlockReduce(temp_storage).template Sum<true>(input, BLOCK_THREADS); } /** * \brief Computes a block-wide reduction for thread<sub>0</sub> using addition (+) as the reduction operator. Each thread contributes an array of consecutive input elements. * * \par * - The return value is undefined in threads other than thread<sub>0</sub>. * - \granularity * - \smemreuse * * \par Snippet * The code snippet below illustrates a sum reduction of 512 integer items that * are partitioned in a [<em>blocked arrangement</em>](index.html#sec5sec3) across 128 threads * where each thread owns 4 consecutive items. * \par * \code * #include <cub/cub.cuh> // or equivalently <cub/block/block_reduce.cuh> * * __global__ void ExampleKernel(...) * { * // Specialize BlockReduce for a 1D block of 128 threads on type int * typedef cub::BlockReduce<int, 128> BlockReduce; * * // Allocate shared memory for BlockReduce * __shared__ typename BlockReduce::TempStorage temp_storage; * * // Obtain a segment of consecutive items that are blocked across threads * int thread_data[4]; * ... * * // Compute the block-wide sum for thread0 * int aggregate = BlockReduce(temp_storage).Sum(thread_data); * * \endcode * * \tparam ITEMS_PER_THREAD <b>[inferred]</b> The number of consecutive items partitioned onto each thread. */ template <int ITEMS_PER_THREAD> __device__ __forceinline__ T Sum( T (&inputs)[ITEMS_PER_THREAD]) ///< [in] Calling thread's input segment { // Reduce partials T partial = internal::ThreadReduce(inputs, cub::Sum()); return Sum(partial); } /** * \brief Computes a block-wide reduction for thread<sub>0</sub> using addition (+) as the reduction operator. The first \p num_valid threads each contribute one input element. * * \par * - The return value is undefined in threads other than thread<sub>0</sub>. * - \rowmajor * - \smemreuse * * \par Snippet * The code snippet below illustrates a sum reduction of a partially-full tile of integer items that * are partitioned across 128 threads. * \par * \code * #include <cub/cub.cuh> // or equivalently <cub/block/block_reduce.cuh> * * __global__ void ExampleKernel(int num_valid, ...) * { * // Specialize BlockReduce for a 1D block of 128 threads on type int * typedef cub::BlockReduce<int, 128> BlockReduce; * * // Allocate shared memory for BlockReduce * __shared__ typename BlockReduce::TempStorage temp_storage; * * // Each thread obtains an input item (up to num_items) * int thread_data; * if (threadIdx.x < num_valid) * thread_data = ... * * // Compute the block-wide sum for thread0 * int aggregate = BlockReduce(temp_storage).Sum(thread_data, num_valid); * * \endcode * */ __device__ __forceinline__ T Sum( T input, ///< [in] Calling thread's input int num_valid) ///< [in] Number of threads containing valid elements (may be less than BLOCK_THREADS) { // Determine if we scan skip bounds checking if (num_valid >= BLOCK_THREADS) { return InternalBlockReduce(temp_storage).template Sum<true>(input, num_valid); } else { return InternalBlockReduce(temp_storage).template Sum<false>(input, num_valid); } } //@} end member group }; /** * \example example_block_reduce.cu */ } // CUB namespace CUB_NS_POSTFIX // Optional outer namespace(s) |