Blame view

tools/cub-1.8.0/cub/block/specializations/block_reduce_warp_reductions.cuh 9.54 KB
8dcb6dfcb   Yannick Estève   first commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
  /******************************************************************************
   * Copyright (c) 2011, Duane Merrill.  All rights reserved.
   * Copyright (c) 2011-2018, NVIDIA CORPORATION.  All rights reserved.
   * 
   * Redistribution and use in source and binary forms, with or without
   * modification, are permitted provided that the following conditions are met:
   *     * Redistributions of source code must retain the above copyright
   *       notice, this list of conditions and the following disclaimer.
   *     * Redistributions in binary form must reproduce the above copyright
   *       notice, this list of conditions and the following disclaimer in the
   *       documentation and/or other materials provided with the distribution.
   *     * Neither the name of the NVIDIA CORPORATION nor the
   *       names of its contributors may be used to endorse or promote products
   *       derived from this software without specific prior written permission.
   * 
   * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
   * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
   * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
   * DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY
   * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
   * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
   * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
   * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
   * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
   * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
   *
   ******************************************************************************/
  
  /**
   * \file
   * cub::BlockReduceWarpReductions provides variants of warp-reduction-based parallel reduction across a CUDA thread block.  Supports non-commutative reduction operators.
   */
  
  #pragma once
  
  #include "../../warp/warp_reduce.cuh"
  #include "../../util_ptx.cuh"
  #include "../../util_arch.cuh"
  #include "../../util_namespace.cuh"
  
  /// Optional outer namespace(s)
  CUB_NS_PREFIX
  
  /// CUB namespace
  namespace cub {
  
  
  /**
   * \brief BlockReduceWarpReductions provides variants of warp-reduction-based parallel reduction across a CUDA thread block.  Supports non-commutative reduction operators.
   */
  template <
      typename    T,              ///< Data type being reduced
      int         BLOCK_DIM_X,    ///< The thread block length in threads along the X dimension
      int         BLOCK_DIM_Y,    ///< The thread block length in threads along the Y dimension
      int         BLOCK_DIM_Z,    ///< The thread block length in threads along the Z dimension
      int         PTX_ARCH>       ///< The PTX compute capability for which to to specialize this collective
  struct BlockReduceWarpReductions
  {
      /// Constants
      enum
      {
          /// The thread block size in threads
          BLOCK_THREADS = BLOCK_DIM_X * BLOCK_DIM_Y * BLOCK_DIM_Z,
  
          /// Number of warp threads
          WARP_THREADS = CUB_WARP_THREADS(PTX_ARCH),
  
          /// Number of active warps
          WARPS = (BLOCK_THREADS + WARP_THREADS - 1) / WARP_THREADS,
  
          /// The logical warp size for warp reductions
          LOGICAL_WARP_SIZE = CUB_MIN(BLOCK_THREADS, WARP_THREADS),
  
          /// Whether or not the logical warp size evenly divides the thread block size
          EVEN_WARP_MULTIPLE = (BLOCK_THREADS % LOGICAL_WARP_SIZE == 0)
      };
  
  
      ///  WarpReduce utility type
      typedef typename WarpReduce<T, LOGICAL_WARP_SIZE, PTX_ARCH>::InternalWarpReduce WarpReduce;
  
  
      /// Shared memory storage layout type
      struct _TempStorage
      {
          typename WarpReduce::TempStorage    warp_reduce[WARPS];         ///< Buffer for warp-synchronous scan
          T                                   warp_aggregates[WARPS];     ///< Shared totals from each warp-synchronous scan
          T                                   block_prefix;               ///< Shared prefix for the entire thread block
      };
  
      /// Alias wrapper allowing storage to be unioned
      struct TempStorage : Uninitialized<_TempStorage> {};
  
  
      // Thread fields
      _TempStorage &temp_storage;
      int linear_tid;
      int warp_id;
      int lane_id;
  
  
      /// Constructor
      __device__ __forceinline__ BlockReduceWarpReductions(
          TempStorage &temp_storage)
      :
          temp_storage(temp_storage.Alias()),
          linear_tid(RowMajorTid(BLOCK_DIM_X, BLOCK_DIM_Y, BLOCK_DIM_Z)),
          warp_id((WARPS == 1) ? 0 : linear_tid / WARP_THREADS),
          lane_id(LaneId())
      {}
  
  
      template <bool FULL_TILE, typename ReductionOp, int SUCCESSOR_WARP>
      __device__ __forceinline__ T ApplyWarpAggregates(
          ReductionOp                 reduction_op,       ///< [in] Binary scan operator
          T                           warp_aggregate,     ///< [in] <b>[<em>lane</em><sub>0</sub> only]</b> Warp-wide aggregate reduction of input items
          int                         num_valid,          ///< [in] Number of valid elements (may be less than BLOCK_THREADS)
          Int2Type<SUCCESSOR_WARP>    /*successor_warp*/)
      {
          if (FULL_TILE || (SUCCESSOR_WARP * LOGICAL_WARP_SIZE < num_valid))
          {
              T addend = temp_storage.warp_aggregates[SUCCESSOR_WARP];
              warp_aggregate = reduction_op(warp_aggregate, addend);
          }
          return ApplyWarpAggregates<FULL_TILE>(reduction_op, warp_aggregate, num_valid, Int2Type<SUCCESSOR_WARP + 1>());
      }
  
      template <bool FULL_TILE, typename ReductionOp>
      __device__ __forceinline__ T ApplyWarpAggregates(
          ReductionOp         /*reduction_op*/,   ///< [in] Binary scan operator
          T                   warp_aggregate,     ///< [in] <b>[<em>lane</em><sub>0</sub> only]</b> Warp-wide aggregate reduction of input items
          int                 /*num_valid*/,      ///< [in] Number of valid elements (may be less than BLOCK_THREADS)
          Int2Type<WARPS>     /*successor_warp*/)
      {
          return warp_aggregate;
      }
  
  
      /// Returns block-wide aggregate in <em>thread</em><sub>0</sub>.
      template <
          bool                FULL_TILE,
          typename            ReductionOp>
      __device__ __forceinline__ T ApplyWarpAggregates(
          ReductionOp         reduction_op,       ///< [in] Binary scan operator
          T                   warp_aggregate,     ///< [in] <b>[<em>lane</em><sub>0</sub> only]</b> Warp-wide aggregate reduction of input items
          int                 num_valid)          ///< [in] Number of valid elements (may be less than BLOCK_THREADS)
      {
          // Share lane aggregates
          if (lane_id == 0)
          {
              temp_storage.warp_aggregates[warp_id] = warp_aggregate;
          }
  
          CTA_SYNC();
  
          // Update total aggregate in warp 0, lane 0
          if (linear_tid == 0)
          {
              warp_aggregate = ApplyWarpAggregates<FULL_TILE>(reduction_op, warp_aggregate, num_valid, Int2Type<1>());
          }
  
          return warp_aggregate;
      }
  
  
      /// Computes a thread block-wide reduction using addition (+) as the reduction operator. The first num_valid threads each contribute one reduction partial.  The return value is only valid for thread<sub>0</sub>.
      template <bool FULL_TILE>
      __device__ __forceinline__ T Sum(
          T                   input,          ///< [in] Calling thread's input partial reductions
          int                 num_valid)      ///< [in] Number of valid elements (may be less than BLOCK_THREADS)
      {
          cub::Sum    reduction_op;
          int         warp_offset = (warp_id * LOGICAL_WARP_SIZE);
          int         warp_num_valid = ((FULL_TILE && EVEN_WARP_MULTIPLE) || (warp_offset + LOGICAL_WARP_SIZE <= num_valid)) ?
                              LOGICAL_WARP_SIZE :
                              num_valid - warp_offset;
  
          // Warp reduction in every warp
          T warp_aggregate = WarpReduce(temp_storage.warp_reduce[warp_id]).template Reduce<(FULL_TILE && EVEN_WARP_MULTIPLE)>(
              input,
              warp_num_valid,
              cub::Sum());
  
          // Update outputs and block_aggregate with warp-wide aggregates from lane-0s
          return ApplyWarpAggregates<FULL_TILE>(reduction_op, warp_aggregate, num_valid);
      }
  
  
      /// Computes a thread block-wide reduction using the specified reduction operator. The first num_valid threads each contribute one reduction partial.  The return value is only valid for thread<sub>0</sub>.
      template <
          bool                FULL_TILE,
          typename            ReductionOp>
      __device__ __forceinline__ T Reduce(
          T                   input,              ///< [in] Calling thread's input partial reductions
          int                 num_valid,          ///< [in] Number of valid elements (may be less than BLOCK_THREADS)
          ReductionOp         reduction_op)       ///< [in] Binary reduction operator
      {
          int         warp_offset = warp_id * LOGICAL_WARP_SIZE;
          int         warp_num_valid = ((FULL_TILE && EVEN_WARP_MULTIPLE) || (warp_offset + LOGICAL_WARP_SIZE <= num_valid)) ?
                              LOGICAL_WARP_SIZE :
                              num_valid - warp_offset;
  
          // Warp reduction in every warp
          T warp_aggregate = WarpReduce(temp_storage.warp_reduce[warp_id]).template Reduce<(FULL_TILE && EVEN_WARP_MULTIPLE)>(
              input,
              warp_num_valid,
              reduction_op);
  
          // Update outputs and block_aggregate with warp-wide aggregates from lane-0s
          return ApplyWarpAggregates<FULL_TILE>(reduction_op, warp_aggregate, num_valid);
      }
  
  };
  
  
  }               // CUB namespace
  CUB_NS_POSTFIX  // Optional outer namespace(s)