Blame view
tools/cub-1.8.0/cub/device/device_partition.cuh
13.6 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 |
/****************************************************************************** * Copyright (c) 2011, Duane Merrill. All rights reserved. * Copyright (c) 2011-2018, NVIDIA CORPORATION. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of the NVIDIA CORPORATION nor the * names of its contributors may be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * ******************************************************************************/ /** * \file * cub::DevicePartition provides device-wide, parallel operations for partitioning sequences of data items residing within device-accessible memory. */ #pragma once #include <stdio.h> #include <iterator> #include "dispatch/dispatch_select_if.cuh" #include "../util_namespace.cuh" /// Optional outer namespace(s) CUB_NS_PREFIX /// CUB namespace namespace cub { /** * \brief DevicePartition provides device-wide, parallel operations for partitioning sequences of data items residing within device-accessible memory. ![](partition_logo.png) * \ingroup SingleModule * * \par Overview * These operations apply a selection criterion to construct a partitioned output sequence from items selected/unselected from * a specified input sequence. * * \par Usage Considerations * \cdp_class{DevicePartition} * * \par Performance * \linear_performance{partition} * * \par * The following chart illustrates DevicePartition::If * performance across different CUDA architectures for \p int32 items, * where 50% of the items are randomly selected for the first partition. * \plots_below * * \image html partition_if_int32_50_percent.png * */ struct DevicePartition { /** * \brief Uses the \p d_flags sequence to split the corresponding items from \p d_in into a partitioned sequence \p d_out. The total number of items copied into the first partition is written to \p d_num_selected_out. ![](partition_flags_logo.png) * * \par * - The value type of \p d_flags must be castable to \p bool (e.g., \p bool, \p char, \p int, etc.). * - Copies of the selected items are compacted into \p d_out and maintain their original * relative ordering, however copies of the unselected items are compacted into the * rear of \p d_out in reverse order. * - \devicestorage * * \par Snippet * The code snippet below illustrates the compaction of items selected from an \p int device vector. * \par * \code * #include <cub/cub.cuh> // or equivalently <cub/device/device_partition.cuh> * * // Declare, allocate, and initialize device-accessible pointers for input, flags, and output * int num_items; // e.g., 8 * int *d_in; // e.g., [1, 2, 3, 4, 5, 6, 7, 8] * char *d_flags; // e.g., [1, 0, 0, 1, 0, 1, 1, 0] * int *d_out; // e.g., [ , , , , , , , ] * int *d_num_selected_out; // e.g., [ ] * ... * * // Determine temporary device storage requirements * void *d_temp_storage = NULL; * size_t temp_storage_bytes = 0; * cub::DevicePartition::Flagged(d_temp_storage, temp_storage_bytes, d_in, d_flags, d_out, d_num_selected_out, num_items); * * // Allocate temporary storage * cudaMalloc(&d_temp_storage, temp_storage_bytes); * * // Run selection * cub::DevicePartition::Flagged(d_temp_storage, temp_storage_bytes, d_in, d_flags, d_out, d_num_selected_out, num_items); * * // d_out <-- [1, 4, 6, 7, 8, 5, 3, 2] * // d_num_selected_out <-- [4] * * \endcode * * \tparam InputIteratorT <b>[inferred]</b> Random-access input iterator type for reading input items \iterator * \tparam FlagIterator <b>[inferred]</b> Random-access input iterator type for reading selection flags \iterator * \tparam OutputIteratorT <b>[inferred]</b> Random-access output iterator type for writing output items \iterator * \tparam NumSelectedIteratorT <b>[inferred]</b> Output iterator type for recording the number of items selected \iterator */ template < typename InputIteratorT, typename FlagIterator, typename OutputIteratorT, typename NumSelectedIteratorT> CUB_RUNTIME_FUNCTION __forceinline__ static cudaError_t Flagged( void* d_temp_storage, ///< [in] %Device-accessible allocation of temporary storage. When NULL, the required allocation size is written to \p temp_storage_bytes and no work is done. size_t &temp_storage_bytes, ///< [in,out] Reference to size in bytes of \p d_temp_storage allocation InputIteratorT d_in, ///< [in] Pointer to the input sequence of data items FlagIterator d_flags, ///< [in] Pointer to the input sequence of selection flags OutputIteratorT d_out, ///< [out] Pointer to the output sequence of partitioned data items NumSelectedIteratorT d_num_selected_out, ///< [out] Pointer to the output total number of items selected (i.e., the offset of the unselected partition) int num_items, ///< [in] Total number of items to select from cudaStream_t stream = 0, ///< [in] <b>[optional]</b> CUDA stream to launch kernels within. Default is stream<sub>0</sub>. bool debug_synchronous = false) ///< [in] <b>[optional]</b> Whether or not to synchronize the stream after every kernel launch to check for errors. May cause significant slowdown. Default is \p false. { typedef int OffsetT; // Signed integer type for global offsets typedef NullType SelectOp; // Selection op (not used) typedef NullType EqualityOp; // Equality operator (not used) return DispatchSelectIf<InputIteratorT, FlagIterator, OutputIteratorT, NumSelectedIteratorT, SelectOp, EqualityOp, OffsetT, true>::Dispatch( d_temp_storage, temp_storage_bytes, d_in, d_flags, d_out, d_num_selected_out, SelectOp(), EqualityOp(), num_items, stream, debug_synchronous); } /** * \brief Uses the \p select_op functor to split the corresponding items from \p d_in into a partitioned sequence \p d_out. The total number of items copied into the first partition is written to \p d_num_selected_out. ![](partition_logo.png) * * \par * - Copies of the selected items are compacted into \p d_out and maintain their original * relative ordering, however copies of the unselected items are compacted into the * rear of \p d_out in reverse order. * - \devicestorage * * \par Performance * The following charts illustrate saturated partition-if performance across different * CUDA architectures for \p int32 and \p int64 items, respectively. Items are * selected for the first partition with 50% probability. * * \image html partition_if_int32_50_percent.png * \image html partition_if_int64_50_percent.png * * \par * The following charts are similar, but 5% selection probability for the first partition: * * \image html partition_if_int32_5_percent.png * \image html partition_if_int64_5_percent.png * * \par Snippet * The code snippet below illustrates the compaction of items selected from an \p int device vector. * \par * \code * #include <cub/cub.cuh> // or equivalently <cub/device/device_partition.cuh> * * // Functor type for selecting values less than some criteria * struct LessThan * { * int compare; * * CUB_RUNTIME_FUNCTION __forceinline__ * LessThan(int compare) : compare(compare) {} * * CUB_RUNTIME_FUNCTION __forceinline__ * bool operator()(const int &a) const { * return (a < compare); * } * }; * * // Declare, allocate, and initialize device-accessible pointers for input and output * int num_items; // e.g., 8 * int *d_in; // e.g., [0, 2, 3, 9, 5, 2, 81, 8] * int *d_out; // e.g., [ , , , , , , , ] * int *d_num_selected_out; // e.g., [ ] * LessThan select_op(7); * ... * * // Determine temporary device storage requirements * void *d_temp_storage = NULL; * size_t temp_storage_bytes = 0; * cub::DeviceSelect::If(d_temp_storage, temp_storage_bytes, d_in, d_out, d_num_selected_out, num_items, select_op); * * // Allocate temporary storage * cudaMalloc(&d_temp_storage, temp_storage_bytes); * * // Run selection * cub::DeviceSelect::If(d_temp_storage, temp_storage_bytes, d_in, d_out, d_num_selected_out, num_items, select_op); * * // d_out <-- [0, 2, 3, 5, 2, 8, 81, 9] * // d_num_selected_out <-- [5] * * \endcode * * \tparam InputIteratorT <b>[inferred]</b> Random-access input iterator type for reading input items \iterator * \tparam OutputIteratorT <b>[inferred]</b> Random-access output iterator type for writing output items \iterator * \tparam NumSelectedIteratorT <b>[inferred]</b> Output iterator type for recording the number of items selected \iterator * \tparam SelectOp <b>[inferred]</b> Selection functor type having member <tt>bool operator()(const T &a)</tt> */ template < typename InputIteratorT, typename OutputIteratorT, typename NumSelectedIteratorT, typename SelectOp> CUB_RUNTIME_FUNCTION __forceinline__ static cudaError_t If( void* d_temp_storage, ///< [in] %Device-accessible allocation of temporary storage. When NULL, the required allocation size is written to \p temp_storage_bytes and no work is done. size_t &temp_storage_bytes, ///< [in,out] Reference to size in bytes of \p d_temp_storage allocation InputIteratorT d_in, ///< [in] Pointer to the input sequence of data items OutputIteratorT d_out, ///< [out] Pointer to the output sequence of partitioned data items NumSelectedIteratorT d_num_selected_out, ///< [out] Pointer to the output total number of items selected (i.e., the offset of the unselected partition) int num_items, ///< [in] Total number of items to select from SelectOp select_op, ///< [in] Unary selection operator cudaStream_t stream = 0, ///< [in] <b>[optional]</b> CUDA stream to launch kernels within. Default is stream<sub>0</sub>. bool debug_synchronous = false) ///< [in] <b>[optional]</b> Whether or not to synchronize the stream after every kernel launch to check for errors. May cause significant slowdown. Default is \p false. { typedef int OffsetT; // Signed integer type for global offsets typedef NullType* FlagIterator; // FlagT iterator type (not used) typedef NullType EqualityOp; // Equality operator (not used) return DispatchSelectIf<InputIteratorT, FlagIterator, OutputIteratorT, NumSelectedIteratorT, SelectOp, EqualityOp, OffsetT, true>::Dispatch( d_temp_storage, temp_storage_bytes, d_in, NULL, d_out, d_num_selected_out, select_op, EqualityOp(), num_items, stream, debug_synchronous); } }; /** * \example example_device_partition_flagged.cu * \example example_device_partition_if.cu */ } // CUB namespace CUB_NS_POSTFIX // Optional outer namespace(s) |