Blame view

tools/cub-1.8.0/cub/device/device_scan.cuh 21.3 KB
8dcb6dfcb   Yannick Estève   first commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
  
  /******************************************************************************
   * Copyright (c) 2011, Duane Merrill.  All rights reserved.
   * Copyright (c) 2011-2018, NVIDIA CORPORATION.  All rights reserved.
   *
   * Redistribution and use in source and binary forms, with or without
   * modification, are permitted provided that the following conditions are met:
   *     * Redistributions of source code must retain the above copyright
   *       notice, this list of conditions and the following disclaimer.
   *     * Redistributions in binary form must reproduce the above copyright
   *       notice, this list of conditions and the following disclaimer in the
   *       documentation and/or other materials provided with the distribution.
   *     * Neither the name of the NVIDIA CORPORATION nor the
   *       names of its contributors may be used to endorse or promote products
   *       derived from this software without specific prior written permission.
   *
   * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
   * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
   * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
   * DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY
   * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
   * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
   * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
   * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
   * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
   * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
   *
   ******************************************************************************/
  
  /**
   * \file
   * cub::DeviceScan provides device-wide, parallel operations for computing a prefix scan across a sequence of data items residing within device-accessible memory.
   */
  
  #pragma once
  
  #include <stdio.h>
  #include <iterator>
  
  #include "dispatch/dispatch_scan.cuh"
  #include "../util_namespace.cuh"
  
  /// Optional outer namespace(s)
  CUB_NS_PREFIX
  
  /// CUB namespace
  namespace cub {
  
  
  /**
   * \brief DeviceScan provides device-wide, parallel operations for computing a prefix scan across a sequence of data items residing within device-accessible memory. ![](device_scan.png)
   * \ingroup SingleModule
   *
   * \par Overview
   * Given a sequence of input elements and a binary reduction operator, a [<em>prefix scan</em>](http://en.wikipedia.org/wiki/Prefix_sum)
   * produces an output sequence where each element is computed to be the reduction
   * of the elements occurring earlier in the input sequence.  <em>Prefix sum</em>
   * connotes a prefix scan with the addition operator. The term \em inclusive indicates
   * that the <em>i</em><sup>th</sup> output reduction incorporates the <em>i</em><sup>th</sup> input.
   * The term \em exclusive indicates the <em>i</em><sup>th</sup> input is not incorporated into
   * the <em>i</em><sup>th</sup> output reduction.
   *
   * \par
   * As of CUB 1.0.1 (2013), CUB's device-wide scan APIs have implemented our <em>"decoupled look-back"</em> algorithm
   * for performing global prefix scan with only a single pass through the
   * input data, as described in our 2016 technical report [1].  The central
   * idea is to leverage a small, constant factor of redundant work in order to overlap the latencies
   * of global prefix propagation with local computation.  As such, our algorithm requires only
   * ~2<em>n</em> data movement (<em>n</em> inputs are read, <em>n</em> outputs are written), and typically
   * proceeds at "memcpy" speeds.
   *
   * \par
   * [1] [Duane Merrill and Michael Garland.  "Single-pass Parallel Prefix Scan with Decoupled Look-back", <em>NVIDIA Technical Report NVR-2016-002</em>, 2016.](https://research.nvidia.com/publication/single-pass-parallel-prefix-scan-decoupled-look-back)
   *
   * \par Usage Considerations
   * \cdp_class{DeviceScan}
   *
   * \par Performance
   * \linear_performance{prefix scan}
   *
   * \par
   * The following chart illustrates DeviceScan::ExclusiveSum
   * performance across different CUDA architectures for \p int32 keys.
   * \plots_below
   *
   * \image html scan_int32.png
   *
   */
  struct DeviceScan
  {
      /******************************************************************//**
       * 
  ame Exclusive scans
       *********************************************************************/
      //@{
  
      /**
       * \brief Computes a device-wide exclusive prefix sum.  The value of 0 is applied as the initial value, and is assigned to *d_out.
       *
       * \par
       * - Supports non-commutative sum operators.
       * - Provides "run-to-run" determinism for pseudo-associative reduction
       *   (e.g., addition of floating point types) on the same GPU device.
       *   However, results for pseudo-associative reduction may be inconsistent
       *   from one device to a another device of a different compute-capability
       *   because CUB can employ different tile-sizing for different architectures.
       * - \devicestorage
       *
       * \par Performance
       * The following charts illustrate saturated exclusive sum performance across different
       * CUDA architectures for \p int32 and \p int64 items, respectively.
       *
       * \image html scan_int32.png
       * \image html scan_int64.png
       *
       * \par Snippet
       * The code snippet below illustrates the exclusive prefix sum of an \p int device vector.
       * \par
       * \code
       * #include <cub/cub.cuh>   // or equivalently <cub/device/device_scan.cuh>
       *
       * // Declare, allocate, and initialize device-accessible pointers for input and output
       * int  num_items;      // e.g., 7
       * int  *d_in;          // e.g., [8, 6, 7, 5, 3, 0, 9]
       * int  *d_out;         // e.g., [ ,  ,  ,  ,  ,  ,  ]
       * ...
       *
       * // Determine temporary device storage requirements
       * void     *d_temp_storage = NULL;
       * size_t   temp_storage_bytes = 0;
       * cub::DeviceScan::ExclusiveSum(d_temp_storage, temp_storage_bytes, d_in, d_out, num_items);
       *
       * // Allocate temporary storage
       * cudaMalloc(&d_temp_storage, temp_storage_bytes);
       *
       * // Run exclusive prefix sum
       * cub::DeviceScan::ExclusiveSum(d_temp_storage, temp_storage_bytes, d_in, d_out, num_items);
       *
       * // d_out s<-- [0, 8, 14, 21, 26, 29, 29]
       *
       * \endcode
       *
       * \tparam InputIteratorT     <b>[inferred]</b> Random-access input iterator type for reading scan inputs \iterator
       * \tparam OutputIteratorT    <b>[inferred]</b> Random-access output iterator type for writing scan outputs \iterator
       */
      template <
          typename        InputIteratorT,
          typename        OutputIteratorT>
      CUB_RUNTIME_FUNCTION
      static cudaError_t ExclusiveSum(
          void            *d_temp_storage,                    ///< [in] %Device-accessible allocation of temporary storage.  When NULL, the required allocation size is written to \p temp_storage_bytes and no work is done.
          size_t          &temp_storage_bytes,                ///< [in,out] Reference to size in bytes of \p d_temp_storage allocation
          InputIteratorT  d_in,                               ///< [in] Pointer to the input sequence of data items
          OutputIteratorT d_out,                              ///< [out] Pointer to the output sequence of data items
          int             num_items,                          ///< [in] Total number of input items (i.e., the length of \p d_in)
          cudaStream_t    stream              = 0,            ///< [in] <b>[optional]</b> CUDA stream to launch kernels within.  Default is stream<sub>0</sub>.
          bool            debug_synchronous   = false)        ///< [in] <b>[optional]</b> Whether or not to synchronize the stream after every kernel launch to check for errors.  May cause significant slowdown.  Default is \p false.
      {
          // Signed integer type for global offsets
          typedef int OffsetT;
  
          // The output value type
          typedef typename If<(Equals<typename std::iterator_traits<OutputIteratorT>::value_type, void>::VALUE),  // OutputT =  (if output iterator's value type is void) ?
              typename std::iterator_traits<InputIteratorT>::value_type,                                          // ... then the input iterator's value type,
              typename std::iterator_traits<OutputIteratorT>::value_type>::Type OutputT;                          // ... else the output iterator's value type
  
          // Initial value
          OutputT init_value = 0;
  
          return DispatchScan<InputIteratorT, OutputIteratorT, Sum, OutputT, OffsetT>::Dispatch(
              d_temp_storage,
              temp_storage_bytes,
              d_in,
              d_out,
              Sum(),
              init_value,
              num_items,
              stream,
              debug_synchronous);
      }
  
  
      /**
       * \brief Computes a device-wide exclusive prefix scan using the specified binary \p scan_op functor.  The \p init_value value is applied as the initial value, and is assigned to *d_out.
       *
       * \par
       * - Supports non-commutative scan operators.
       * - Provides "run-to-run" determinism for pseudo-associative reduction
       *   (e.g., addition of floating point types) on the same GPU device.
       *   However, results for pseudo-associative reduction may be inconsistent
       *   from one device to a another device of a different compute-capability
       *   because CUB can employ different tile-sizing for different architectures.
       * - \devicestorage
       *
       * \par Snippet
       * The code snippet below illustrates the exclusive prefix min-scan of an \p int device vector
       * \par
       * \code
       * #include <cub/cub.cuh>   // or equivalently <cub/device/device_scan.cuh>
       *
       * // CustomMin functor
       * struct CustomMin
       * {
       *     template <typename T>
       *     CUB_RUNTIME_FUNCTION __forceinline__
       *     T operator()(const T &a, const T &b) const {
       *         return (b < a) ? b : a;
       *     }
       * };
       *
       * // Declare, allocate, and initialize device-accessible pointers for input and output
       * int          num_items;      // e.g., 7
       * int          *d_in;          // e.g., [8, 6, 7, 5, 3, 0, 9]
       * int          *d_out;         // e.g., [ ,  ,  ,  ,  ,  ,  ]
       * CustomMin    min_op
       * ...
       *
       * // Determine temporary device storage requirements for exclusive prefix scan
       * void     *d_temp_storage = NULL;
       * size_t   temp_storage_bytes = 0;
       * cub::DeviceScan::ExclusiveScan(d_temp_storage, temp_storage_bytes, d_in, d_out, min_op, (int) MAX_INT, num_items);
       *
       * // Allocate temporary storage for exclusive prefix scan
       * cudaMalloc(&d_temp_storage, temp_storage_bytes);
       *
       * // Run exclusive prefix min-scan
       * cub::DeviceScan::ExclusiveScan(d_temp_storage, temp_storage_bytes, d_in, d_out, min_op, (int) MAX_INT, num_items);
       *
       * // d_out <-- [2147483647, 8, 6, 6, 5, 3, 0]
       *
       * \endcode
       *
       * \tparam InputIteratorT   <b>[inferred]</b> Random-access input iterator type for reading scan inputs \iterator
       * \tparam OutputIteratorT  <b>[inferred]</b> Random-access output iterator type for writing scan outputs \iterator
       * \tparam ScanOp           <b>[inferred]</b> Binary scan functor type having member <tt>T operator()(const T &a, const T &b)</tt>
       * \tparam Identity         <b>[inferred]</b> Type of the \p identity value used Binary scan functor type having member <tt>T operator()(const T &a, const T &b)</tt>
       */
      template <
          typename        InputIteratorT,
          typename        OutputIteratorT,
          typename        ScanOpT,
          typename        InitValueT>
      CUB_RUNTIME_FUNCTION
      static cudaError_t ExclusiveScan(
          void            *d_temp_storage,                    ///< [in] %Device-accessible allocation of temporary storage.  When NULL, the required allocation size is written to \p temp_storage_bytes and no work is done.
          size_t          &temp_storage_bytes,                ///< [in,out] Reference to size in bytes of \p d_temp_storage allocation
          InputIteratorT  d_in,                               ///< [in] Pointer to the input sequence of data items
          OutputIteratorT d_out,                              ///< [out] Pointer to the output sequence of data items
          ScanOpT         scan_op,                            ///< [in] Binary scan functor
          InitValueT      init_value,                         ///< [in] Initial value to seed the exclusive scan (and is assigned to *d_out)
          int             num_items,                          ///< [in] Total number of input items (i.e., the length of \p d_in)
          cudaStream_t    stream              = 0,            ///< [in] <b>[optional]</b> CUDA stream to launch kernels within.  Default is stream<sub>0</sub>.
          bool            debug_synchronous   = false)        ///< [in] <b>[optional]</b> Whether or not to synchronize the stream after every kernel launch to check for errors.  May cause significant slowdown.  Default is \p false.
      {
          // Signed integer type for global offsets
          typedef int OffsetT;
  
          return DispatchScan<InputIteratorT, OutputIteratorT, ScanOpT, InitValueT, OffsetT>::Dispatch(
              d_temp_storage,
              temp_storage_bytes,
              d_in,
              d_out,
              scan_op,
              init_value,
              num_items,
              stream,
              debug_synchronous);
      }
  
  
      //@}  end member group
      /******************************************************************//**
       * 
  ame Inclusive scans
       *********************************************************************/
      //@{
  
  
      /**
       * \brief Computes a device-wide inclusive prefix sum.
       *
       * \par
       * - Supports non-commutative sum operators.
       * - Provides "run-to-run" determinism for pseudo-associative reduction
       *   (e.g., addition of floating point types) on the same GPU device.
       *   However, results for pseudo-associative reduction may be inconsistent
       *   from one device to a another device of a different compute-capability
       *   because CUB can employ different tile-sizing for different architectures.
       * - \devicestorage
       *
       * \par Snippet
       * The code snippet below illustrates the inclusive prefix sum of an \p int device vector.
       * \par
       * \code
       * #include <cub/cub.cuh>   // or equivalently <cub/device/device_scan.cuh>
       *
       * // Declare, allocate, and initialize device-accessible pointers for input and output
       * int  num_items;      // e.g., 7
       * int  *d_in;          // e.g., [8, 6, 7, 5, 3, 0, 9]
       * int  *d_out;         // e.g., [ ,  ,  ,  ,  ,  ,  ]
       * ...
       *
       * // Determine temporary device storage requirements for inclusive prefix sum
       * void     *d_temp_storage = NULL;
       * size_t   temp_storage_bytes = 0;
       * cub::DeviceScan::InclusiveSum(d_temp_storage, temp_storage_bytes, d_in, d_out, num_items);
       *
       * // Allocate temporary storage for inclusive prefix sum
       * cudaMalloc(&d_temp_storage, temp_storage_bytes);
       *
       * // Run inclusive prefix sum
       * cub::DeviceScan::InclusiveSum(d_temp_storage, temp_storage_bytes, d_in, d_out, num_items);
       *
       * // d_out <-- [8, 14, 21, 26, 29, 29, 38]
       *
       * \endcode
       *
       * \tparam InputIteratorT     <b>[inferred]</b> Random-access input iterator type for reading scan inputs \iterator
       * \tparam OutputIteratorT    <b>[inferred]</b> Random-access output iterator type for writing scan outputs \iterator
       */
      template <
          typename            InputIteratorT,
          typename            OutputIteratorT>
      CUB_RUNTIME_FUNCTION
      static cudaError_t InclusiveSum(
          void*               d_temp_storage,                 ///< [in] %Device-accessible allocation of temporary storage.  When NULL, the required allocation size is written to \p temp_storage_bytes and no work is done.
          size_t&             temp_storage_bytes,             ///< [in,out] Reference to size in bytes of \p d_temp_storage allocation
          InputIteratorT      d_in,                           ///< [in] Pointer to the input sequence of data items
          OutputIteratorT     d_out,                          ///< [out] Pointer to the output sequence of data items
          int                 num_items,                      ///< [in] Total number of input items (i.e., the length of \p d_in)
          cudaStream_t        stream             = 0,         ///< [in] <b>[optional]</b> CUDA stream to launch kernels within.  Default is stream<sub>0</sub>.
          bool                debug_synchronous  = false)     ///< [in] <b>[optional]</b> Whether or not to synchronize the stream after every kernel launch to check for errors.  May cause significant slowdown.  Default is \p false.
      {
          // Signed integer type for global offsets
          typedef int OffsetT;
  
          return DispatchScan<InputIteratorT, OutputIteratorT, Sum, NullType, OffsetT>::Dispatch(
              d_temp_storage,
              temp_storage_bytes,
              d_in,
              d_out,
              Sum(),
              NullType(),
              num_items,
              stream,
              debug_synchronous);
      }
  
  
      /**
       * \brief Computes a device-wide inclusive prefix scan using the specified binary \p scan_op functor.
       *
       * \par
       * - Supports non-commutative scan operators.
       * - Provides "run-to-run" determinism for pseudo-associative reduction
       *   (e.g., addition of floating point types) on the same GPU device.
       *   However, results for pseudo-associative reduction may be inconsistent
       *   from one device to a another device of a different compute-capability
       *   because CUB can employ different tile-sizing for different architectures.
       * - \devicestorage
       *
       * \par Snippet
       * The code snippet below illustrates the inclusive prefix min-scan of an \p int device vector.
       * \par
       * \code
       * #include <cub/cub.cuh>   // or equivalently <cub/device/device_scan.cuh>
       *
       * // CustomMin functor
       * struct CustomMin
       * {
       *     template <typename T>
       *     CUB_RUNTIME_FUNCTION __forceinline__
       *     T operator()(const T &a, const T &b) const {
       *         return (b < a) ? b : a;
       *     }
       * };
       *
       * // Declare, allocate, and initialize device-accessible pointers for input and output
       * int          num_items;      // e.g., 7
       * int          *d_in;          // e.g., [8, 6, 7, 5, 3, 0, 9]
       * int          *d_out;         // e.g., [ ,  ,  ,  ,  ,  ,  ]
       * CustomMin    min_op;
       * ...
       *
       * // Determine temporary device storage requirements for inclusive prefix scan
       * void *d_temp_storage = NULL;
       * size_t temp_storage_bytes = 0;
       * cub::DeviceScan::InclusiveScan(d_temp_storage, temp_storage_bytes, d_in, d_out, min_op, num_items);
       *
       * // Allocate temporary storage for inclusive prefix scan
       * cudaMalloc(&d_temp_storage, temp_storage_bytes);
       *
       * // Run inclusive prefix min-scan
       * cub::DeviceScan::InclusiveScan(d_temp_storage, temp_storage_bytes, d_in, d_out, min_op, num_items);
       *
       * // d_out <-- [8, 6, 6, 5, 3, 0, 0]
       *
       * \endcode
       *
       * \tparam InputIteratorT   <b>[inferred]</b> Random-access input iterator type for reading scan inputs \iterator
       * \tparam OutputIteratorT  <b>[inferred]</b> Random-access output iterator type for writing scan outputs \iterator
       * \tparam ScanOp           <b>[inferred]</b> Binary scan functor type having member <tt>T operator()(const T &a, const T &b)</tt>
       */
      template <
          typename        InputIteratorT,
          typename        OutputIteratorT,
          typename        ScanOpT>
      CUB_RUNTIME_FUNCTION
      static cudaError_t InclusiveScan(
          void            *d_temp_storage,                    ///< [in] %Device-accessible allocation of temporary storage.  When NULL, the required allocation size is written to \p temp_storage_bytes and no work is done.
          size_t          &temp_storage_bytes,                ///< [in,out] Reference to size in bytes of \p d_temp_storage allocation
          InputIteratorT  d_in,                               ///< [in] Pointer to the input sequence of data items
          OutputIteratorT d_out,                              ///< [out] Pointer to the output sequence of data items
          ScanOpT         scan_op,                            ///< [in] Binary scan functor
          int             num_items,                          ///< [in] Total number of input items (i.e., the length of \p d_in)
          cudaStream_t    stream             = 0,             ///< [in] <b>[optional]</b> CUDA stream to launch kernels within.  Default is stream<sub>0</sub>.
          bool            debug_synchronous  = false)         ///< [in] <b>[optional]</b> Whether or not to synchronize the stream after every kernel launch to check for errors.  May cause significant slowdown.  Default is \p false.
      {
          // Signed integer type for global offsets
          typedef int OffsetT;
  
          return DispatchScan<InputIteratorT, OutputIteratorT, ScanOpT, NullType, OffsetT>::Dispatch(
              d_temp_storage,
              temp_storage_bytes,
              d_in,
              d_out,
              scan_op,
              NullType(),
              num_items,
              stream,
              debug_synchronous);
      }
  
      //@}  end member group
  
  };
  
  /**
   * \example example_device_scan.cu
   */
  
  }               // CUB namespace
  CUB_NS_POSTFIX  // Optional outer namespace(s)