Blame view

tools/cub-1.8.0/cub/warp/specializations/warp_scan_smem.cuh 15.8 KB
8dcb6dfcb   Yannick Estève   first commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
  /******************************************************************************
   * Copyright (c) 2011, Duane Merrill.  All rights reserved.
   * Copyright (c) 2011-2018, NVIDIA CORPORATION.  All rights reserved.
   * 
   * Redistribution and use in source and binary forms, with or without
   * modification, are permitted provided that the following conditions are met:
   *     * Redistributions of source code must retain the above copyright
   *       notice, this list of conditions and the following disclaimer.
   *     * Redistributions in binary form must reproduce the above copyright
   *       notice, this list of conditions and the following disclaimer in the
   *       documentation and/or other materials provided with the distribution.
   *     * Neither the name of the NVIDIA CORPORATION nor the
   *       names of its contributors may be used to endorse or promote products
   *       derived from this software without specific prior written permission.
   * 
   * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
   * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
   * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
   * DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY
   * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
   * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
   * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
   * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
   * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
   * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
   *
   ******************************************************************************/
  
  /**
   * \file
   * cub::WarpScanSmem provides smem-based variants of parallel prefix scan of items partitioned across a CUDA thread warp.
   */
  
  #pragma once
  
  #include "../../thread/thread_operators.cuh"
  #include "../../thread/thread_load.cuh"
  #include "../../thread/thread_store.cuh"
  #include "../../util_type.cuh"
  #include "../../util_namespace.cuh"
  
  /// Optional outer namespace(s)
  CUB_NS_PREFIX
  
  /// CUB namespace
  namespace cub {
  
  /**
   * \brief WarpScanSmem provides smem-based variants of parallel prefix scan of items partitioned across a CUDA thread warp.
   */
  template <
      typename    T,                      ///< Data type being scanned
      int         LOGICAL_WARP_THREADS,   ///< Number of threads per logical warp
      int         PTX_ARCH>               ///< The PTX compute capability for which to to specialize this collective
  struct WarpScanSmem
  {
      /******************************************************************************
       * Constants and type definitions
       ******************************************************************************/
  
      enum
      {
          /// Whether the logical warp size and the PTX warp size coincide
          IS_ARCH_WARP = (LOGICAL_WARP_THREADS == CUB_WARP_THREADS(PTX_ARCH)),
  
          /// Whether the logical warp size is a power-of-two
          IS_POW_OF_TWO = PowerOfTwo<LOGICAL_WARP_THREADS>::VALUE,
  
          /// The number of warp scan steps
          STEPS = Log2<LOGICAL_WARP_THREADS>::VALUE,
  
          /// The number of threads in half a warp
          HALF_WARP_THREADS = 1 << (STEPS - 1),
  
          /// The number of shared memory elements per warp
          WARP_SMEM_ELEMENTS =  LOGICAL_WARP_THREADS + HALF_WARP_THREADS,
      };
  
      /// Storage cell type (workaround for SM1x compiler bugs with custom-ops like Max() on signed chars)
      typedef typename If<((Equals<T, char>::VALUE || Equals<T, signed char>::VALUE) && (PTX_ARCH < 200)), int, T>::Type CellT;
  
      /// Shared memory storage layout type (1.5 warps-worth of elements for each warp)
      typedef CellT _TempStorage[WARP_SMEM_ELEMENTS];
  
      // Alias wrapper allowing storage to be unioned
      struct TempStorage : Uninitialized<_TempStorage> {};
  
  
      /******************************************************************************
       * Thread fields
       ******************************************************************************/
  
      _TempStorage    &temp_storage;
      unsigned int    lane_id;
      unsigned int    member_mask;
  
  
      /******************************************************************************
       * Construction
       ******************************************************************************/
  
      /// Constructor
      __device__ __forceinline__ WarpScanSmem(
          TempStorage     &temp_storage)
      :
          temp_storage(temp_storage.Alias()),
  
          lane_id(IS_ARCH_WARP ?
              LaneId() :
              LaneId() % LOGICAL_WARP_THREADS),
  
          member_mask((0xffffffff >> (32 - LOGICAL_WARP_THREADS)) << ((IS_ARCH_WARP || !IS_POW_OF_TWO ) ?
              0 : // arch-width and non-power-of-two subwarps cannot be tiled with the arch-warp
              ((LaneId() / LOGICAL_WARP_THREADS) * LOGICAL_WARP_THREADS)))
      {}
  
  
      /******************************************************************************
       * Utility methods
       ******************************************************************************/
  
      /// Basic inclusive scan iteration (template unrolled, inductive-case specialization)
      template <
          bool        HAS_IDENTITY,
          int         STEP,
          typename    ScanOp>
      __device__ __forceinline__ void ScanStep(
          T                       &partial,
          ScanOp                  scan_op,
          Int2Type<STEP>          /*step*/)
      {
          const int OFFSET = 1 << STEP;
  
          // Share partial into buffer
          ThreadStore<STORE_VOLATILE>(&temp_storage[HALF_WARP_THREADS + lane_id], (CellT) partial);
  
          WARP_SYNC(member_mask);
  
          // Update partial if addend is in range
          if (HAS_IDENTITY || (lane_id >= OFFSET))
          {
              T addend = (T) ThreadLoad<LOAD_VOLATILE>(&temp_storage[HALF_WARP_THREADS + lane_id - OFFSET]);
              partial = scan_op(addend, partial);
          }
          WARP_SYNC(member_mask);
  
          ScanStep<HAS_IDENTITY>(partial, scan_op, Int2Type<STEP + 1>());
      }
  
  
      /// Basic inclusive scan iteration(template unrolled, base-case specialization)
      template <
          bool        HAS_IDENTITY,
          typename    ScanOp>
      __device__ __forceinline__ void ScanStep(
          T                       &/*partial*/,
          ScanOp                  /*scan_op*/,
          Int2Type<STEPS>         /*step*/)
      {}
  
  
      /// Inclusive prefix scan (specialized for summation across primitive types)
      __device__ __forceinline__ void InclusiveScan(
          T                       input,              ///< [in] Calling thread's input item.
          T                       &output,            ///< [out] Calling thread's output item.  May be aliased with \p input.
          Sum                     scan_op,            ///< [in] Binary scan operator
          Int2Type<true>          /*is_primitive*/)   ///< [in] Marker type indicating whether T is primitive type
      {
          T identity = 0;
          ThreadStore<STORE_VOLATILE>(&temp_storage[lane_id], (CellT) identity);
  
          WARP_SYNC(member_mask);
  
          // Iterate scan steps
          output = input;
          ScanStep<true>(output, scan_op, Int2Type<0>());
      }
  
  
      /// Inclusive prefix scan
      template <typename ScanOp, int IS_PRIMITIVE>
      __device__ __forceinline__ void InclusiveScan(
          T                       input,              ///< [in] Calling thread's input item.
          T                       &output,            ///< [out] Calling thread's output item.  May be aliased with \p input.
          ScanOp                  scan_op,            ///< [in] Binary scan operator
          Int2Type<IS_PRIMITIVE>  /*is_primitive*/)   ///< [in] Marker type indicating whether T is primitive type
      {
          // Iterate scan steps
          output = input;
          ScanStep<false>(output, scan_op, Int2Type<0>());
      }
  
  
      /******************************************************************************
       * Interface
       ******************************************************************************/
  
      //---------------------------------------------------------------------
      // Broadcast
      //---------------------------------------------------------------------
  
      /// Broadcast
      __device__ __forceinline__ T Broadcast(
          T               input,              ///< [in] The value to broadcast
          unsigned int    src_lane)           ///< [in] Which warp lane is to do the broadcasting
      {
          if (lane_id == src_lane)
          {
              ThreadStore<STORE_VOLATILE>(temp_storage, (CellT) input);
          }
  
          WARP_SYNC(member_mask);
  
          return (T)ThreadLoad<LOAD_VOLATILE>(temp_storage);
      }
  
  
      //---------------------------------------------------------------------
      // Inclusive operations
      //---------------------------------------------------------------------
  
      /// Inclusive scan
      template <typename ScanOp>
      __device__ __forceinline__ void InclusiveScan(
          T               input,              ///< [in] Calling thread's input item.
          T               &inclusive_output,  ///< [out] Calling thread's output item.  May be aliased with \p input.
          ScanOp          scan_op)            ///< [in] Binary scan operator
      {
          InclusiveScan(input, inclusive_output, scan_op, Int2Type<Traits<T>::PRIMITIVE>());
      }
  
  
      /// Inclusive scan with aggregate
      template <typename ScanOp>
      __device__ __forceinline__ void InclusiveScan(
          T               input,              ///< [in] Calling thread's input item.
          T               &inclusive_output,  ///< [out] Calling thread's output item.  May be aliased with \p input.
          ScanOp          scan_op,            ///< [in] Binary scan operator
          T               &warp_aggregate)    ///< [out] Warp-wide aggregate reduction of input items.
      {
          InclusiveScan(input, inclusive_output, scan_op);
  
          // Retrieve aggregate
          ThreadStore<STORE_VOLATILE>(&temp_storage[HALF_WARP_THREADS + lane_id], (CellT) inclusive_output);
  
          WARP_SYNC(member_mask);
  
          warp_aggregate = (T) ThreadLoad<LOAD_VOLATILE>(&temp_storage[WARP_SMEM_ELEMENTS - 1]);
  
          WARP_SYNC(member_mask);
      }
  
  
      //---------------------------------------------------------------------
      // Get exclusive from inclusive
      //---------------------------------------------------------------------
  
      /// Update inclusive and exclusive using input and inclusive
      template <typename ScanOpT, typename IsIntegerT>
      __device__ __forceinline__ void Update(
          T                       /*input*/,      ///< [in]
          T                       &inclusive,     ///< [in, out]
          T                       &exclusive,     ///< [out]
          ScanOpT                 /*scan_op*/,    ///< [in]
          IsIntegerT              /*is_integer*/) ///< [in]
      {
          // initial value unknown
          ThreadStore<STORE_VOLATILE>(&temp_storage[HALF_WARP_THREADS + lane_id], (CellT) inclusive);
  
          WARP_SYNC(member_mask);
  
          exclusive = (T) ThreadLoad<LOAD_VOLATILE>(&temp_storage[HALF_WARP_THREADS + lane_id - 1]);
      }
  
      /// Update inclusive and exclusive using input and inclusive (specialized for summation of integer types)
      __device__ __forceinline__ void Update(
          T                       input,
          T                       &inclusive,
          T                       &exclusive,
          cub::Sum                /*scan_op*/,
          Int2Type<true>          /*is_integer*/)
      {
          // initial value presumed 0
          exclusive = inclusive - input;
      }
  
      /// Update inclusive and exclusive using initial value using input, inclusive, and initial value
      template <typename ScanOpT, typename IsIntegerT>
      __device__ __forceinline__ void Update (
          T                       /*input*/,
          T                       &inclusive,
          T                       &exclusive,
          ScanOpT                 scan_op,
          T                       initial_value,
          IsIntegerT              /*is_integer*/)
      {
          inclusive = scan_op(initial_value, inclusive);
          ThreadStore<STORE_VOLATILE>(&temp_storage[HALF_WARP_THREADS + lane_id], (CellT) inclusive);
  
          WARP_SYNC(member_mask);
  
          exclusive = (T) ThreadLoad<LOAD_VOLATILE>(&temp_storage[HALF_WARP_THREADS + lane_id - 1]);
          if (lane_id == 0)
              exclusive = initial_value;
      }
  
      /// Update inclusive and exclusive using initial value using input and inclusive (specialized for summation of integer types)
      __device__ __forceinline__ void Update (
          T                       input,
          T                       &inclusive,
          T                       &exclusive,
          cub::Sum                scan_op,
          T                       initial_value,
          Int2Type<true>          /*is_integer*/)
      {
          inclusive = scan_op(initial_value, inclusive);
          exclusive = inclusive - input;
      }
  
  
      /// Update inclusive, exclusive, and warp aggregate using input and inclusive
      template <typename ScanOpT, typename IsIntegerT>
      __device__ __forceinline__ void Update (
          T                       /*input*/,
          T                       &inclusive,
          T                       &exclusive,
          T                       &warp_aggregate,
          ScanOpT                 /*scan_op*/,
          IsIntegerT              /*is_integer*/)
      {
          // Initial value presumed to be unknown or identity (either way our padding is correct)
          ThreadStore<STORE_VOLATILE>(&temp_storage[HALF_WARP_THREADS + lane_id], (CellT) inclusive);
  
          WARP_SYNC(member_mask);
  
          exclusive = (T) ThreadLoad<LOAD_VOLATILE>(&temp_storage[HALF_WARP_THREADS + lane_id - 1]);
          warp_aggregate = (T) ThreadLoad<LOAD_VOLATILE>(&temp_storage[WARP_SMEM_ELEMENTS - 1]);
      }
  
      /// Update inclusive, exclusive, and warp aggregate using input and inclusive (specialized for summation of integer types)
      __device__ __forceinline__ void Update (
          T                       input,
          T                       &inclusive,
          T                       &exclusive,
          T                       &warp_aggregate,
          cub::Sum                /*scan_o*/,
          Int2Type<true>          /*is_integer*/)
      {
          // Initial value presumed to be unknown or identity (either way our padding is correct)
          ThreadStore<STORE_VOLATILE>(&temp_storage[HALF_WARP_THREADS + lane_id], (CellT) inclusive);
  
          WARP_SYNC(member_mask);
  
          warp_aggregate = (T) ThreadLoad<LOAD_VOLATILE>(&temp_storage[WARP_SMEM_ELEMENTS - 1]);
          exclusive = inclusive - input;
      }
  
      /// Update inclusive, exclusive, and warp aggregate using input, inclusive, and initial value
      template <typename ScanOpT, typename IsIntegerT>
      __device__ __forceinline__ void Update (
          T                       /*input*/,
          T                       &inclusive,
          T                       &exclusive,
          T                       &warp_aggregate,
          ScanOpT                 scan_op,
          T                       initial_value,
          IsIntegerT              /*is_integer*/)
      {
          // Broadcast warp aggregate
          ThreadStore<STORE_VOLATILE>(&temp_storage[HALF_WARP_THREADS + lane_id], (CellT) inclusive);
  
          WARP_SYNC(member_mask);
  
          warp_aggregate = (T) ThreadLoad<LOAD_VOLATILE>(&temp_storage[WARP_SMEM_ELEMENTS - 1]);
  
          WARP_SYNC(member_mask);
  
          // Update inclusive with initial value
          inclusive = scan_op(initial_value, inclusive);
  
          // Get exclusive from exclusive
          ThreadStore<STORE_VOLATILE>(&temp_storage[HALF_WARP_THREADS + lane_id - 1], (CellT) inclusive);
  
          WARP_SYNC(member_mask);
  
          exclusive = (T) ThreadLoad<LOAD_VOLATILE>(&temp_storage[HALF_WARP_THREADS + lane_id - 2]);
  
          if (lane_id == 0)
              exclusive = initial_value;
      }
  
  
  };
  
  
  }               // CUB namespace
  CUB_NS_POSTFIX  // Optional outer namespace(s)