Blame view

tools/cub-1.8.0/cub/warp/warp_scan.cuh 38 KB
8dcb6dfcb   Yannick Estève   first commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
  /******************************************************************************
   * Copyright (c) 2011, Duane Merrill.  All rights reserved.
   * Copyright (c) 2011-2018, NVIDIA CORPORATION.  All rights reserved.
   * 
   * Redistribution and use in source and binary forms, with or without
   * modification, are permitted provided that the following conditions are met:
   *     * Redistributions of source code must retain the above copyright
   *       notice, this list of conditions and the following disclaimer.
   *     * Redistributions in binary form must reproduce the above copyright
   *       notice, this list of conditions and the following disclaimer in the
   *       documentation and/or other materials provided with the distribution.
   *     * Neither the name of the NVIDIA CORPORATION nor the
   *       names of its contributors may be used to endorse or promote products
   *       derived from this software without specific prior written permission.
   * 
   * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
   * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
   * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
   * DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY
   * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
   * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
   * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
   * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
   * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
   * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
   *
   ******************************************************************************/
  
  /**
   * \file
   * The cub::WarpScan class provides [<em>collective</em>](index.html#sec0) methods for computing a parallel prefix scan of items partitioned across a CUDA thread warp.
   */
  
  #pragma once
  
  #include "specializations/warp_scan_shfl.cuh"
  #include "specializations/warp_scan_smem.cuh"
  #include "../thread/thread_operators.cuh"
  #include "../util_arch.cuh"
  #include "../util_type.cuh"
  #include "../util_namespace.cuh"
  
  /// Optional outer namespace(s)
  CUB_NS_PREFIX
  
  /// CUB namespace
  namespace cub {
  
  /**
   * \addtogroup WarpModule
   * @{
   */
  
  /**
   * \brief The WarpScan class provides [<em>collective</em>](index.html#sec0) methods for computing a parallel prefix scan of items partitioned across a CUDA thread warp.  ![](warp_scan_logo.png)
   *
   * \tparam T                        The scan input/output element type
   * \tparam LOGICAL_WARP_THREADS     <b>[optional]</b> The number of threads per "logical" warp (may be less than the number of hardware warp threads).  Default is the warp size associated with the CUDA Compute Capability targeted by the compiler (e.g., 32 threads for SM20).
   * \tparam PTX_ARCH                 <b>[optional]</b> \ptxversion
   *
   * \par Overview
   * - Given a list of input elements and a binary reduction operator, a [<em>prefix scan</em>](http://en.wikipedia.org/wiki/Prefix_sum)
   *   produces an output list where each element is computed to be the reduction
   *   of the elements occurring earlier in the input list.  <em>Prefix sum</em>
   *   connotes a prefix scan with the addition operator. The term \em inclusive indicates
   *   that the <em>i</em><sup>th</sup> output reduction incorporates the <em>i</em><sup>th</sup> input.
   *   The term \em exclusive indicates the <em>i</em><sup>th</sup> input is not incorporated into
   *   the <em>i</em><sup>th</sup> output reduction.
   * - Supports non-commutative scan operators
   * - Supports "logical" warps smaller than the physical warp size (e.g., a logical warp of 8 threads)
   * - The number of entrant threads must be an multiple of \p LOGICAL_WARP_THREADS
   *
   * \par Performance Considerations
   * - Uses special instructions when applicable (e.g., warp \p SHFL)
   * - Uses synchronization-free communication between warp lanes when applicable
   * - Incurs zero bank conflicts for most types
   * - Computation is slightly more efficient (i.e., having lower instruction overhead) for:
   *     - Summation (<b><em>vs.</em></b> generic scan)
   *     - The architecture's warp size is a whole multiple of \p LOGICAL_WARP_THREADS
   *
   * \par Simple Examples
   * \warpcollective{WarpScan}
   * \par
   * The code snippet below illustrates four concurrent warp prefix sums within a block of
   * 128 threads (one per each of the 32-thread warps).
   * \par
   * \code
   * #include <cub/cub.cuh>
   *
   * __global__ void ExampleKernel(...)
   * {
   *     // Specialize WarpScan for type int
   *     typedef cub::WarpScan<int> WarpScan;
   *
   *     // Allocate WarpScan shared memory for 4 warps
   *     __shared__ typename WarpScan::TempStorage temp_storage[4];
   *
   *     // Obtain one input item per thread
   *     int thread_data = ...
   *
   *     // Compute warp-wide prefix sums
   *     int warp_id = threadIdx.x / 32;
   *     WarpScan(temp_storage[warp_id]).ExclusiveSum(thread_data, thread_data);
   *
   * \endcode
   * \par
   * Suppose the set of input \p thread_data across the block of threads is <tt>{1, 1, 1, 1, ...}</tt>.
   * The corresponding output \p thread_data in each of the four warps of threads will be
   * <tt>0, 1, 2, 3, ..., 31}</tt>.
   *
   * \par
   * The code snippet below illustrates a single warp prefix sum within a block of
   * 128 threads.
   * \par
   * \code
   * #include <cub/cub.cuh>
   *
   * __global__ void ExampleKernel(...)
   * {
   *     // Specialize WarpScan for type int
   *     typedef cub::WarpScan<int> WarpScan;
   *
   *     // Allocate WarpScan shared memory for one warp
   *     __shared__ typename WarpScan::TempStorage temp_storage;
   *     ...
   *
   *     // Only the first warp performs a prefix sum
   *     if (threadIdx.x < 32)
   *     {
   *         // Obtain one input item per thread
   *         int thread_data = ...
   *
   *         // Compute warp-wide prefix sums
   *         WarpScan(temp_storage).ExclusiveSum(thread_data, thread_data);
   *
   * \endcode
   * \par
   * Suppose the set of input \p thread_data across the warp of threads is <tt>{1, 1, 1, 1, ...}</tt>.
   * The corresponding output \p thread_data will be <tt>{0, 1, 2, 3, ..., 31}</tt>.
   *
   */
  template <
      typename    T,
      int         LOGICAL_WARP_THREADS    = CUB_PTX_WARP_THREADS,
      int         PTX_ARCH                = CUB_PTX_ARCH>
  class WarpScan
  {
  private:
  
      /******************************************************************************
       * Constants and type definitions
       ******************************************************************************/
  
      enum
      {
          /// Whether the logical warp size and the PTX warp size coincide
          IS_ARCH_WARP = (LOGICAL_WARP_THREADS == CUB_WARP_THREADS(PTX_ARCH)),
  
          /// Whether the logical warp size is a power-of-two
          IS_POW_OF_TWO = ((LOGICAL_WARP_THREADS & (LOGICAL_WARP_THREADS - 1)) == 0),
  
          /// Whether the data type is an integer (which has fully-associative addition)
          IS_INTEGER = ((Traits<T>::CATEGORY == SIGNED_INTEGER) || (Traits<T>::CATEGORY == UNSIGNED_INTEGER))
      };
  
      /// Internal specialization.  Use SHFL-based scan if (architecture is >= SM30) and (LOGICAL_WARP_THREADS is a power-of-two)
      typedef typename If<(PTX_ARCH >= 300) && (IS_POW_OF_TWO),
          WarpScanShfl<T, LOGICAL_WARP_THREADS, PTX_ARCH>,
          WarpScanSmem<T, LOGICAL_WARP_THREADS, PTX_ARCH> >::Type InternalWarpScan;
  
      /// Shared memory storage layout type for WarpScan
      typedef typename InternalWarpScan::TempStorage _TempStorage;
  
  
      /******************************************************************************
       * Thread fields
       ******************************************************************************/
  
      /// Shared storage reference
      _TempStorage    &temp_storage;
      unsigned int    lane_id;
  
  
  
      /******************************************************************************
       * Public types
       ******************************************************************************/
  
  public:
  
      /// \smemstorage{WarpScan}
      struct TempStorage : Uninitialized<_TempStorage> {};
  
  
      /******************************************************************//**
       * 
  ame Collective constructors
       *********************************************************************/
      //@{
  
      /**
       * \brief Collective constructor using the specified memory allocation as temporary storage.  Logical warp and lane identifiers are constructed from <tt>threadIdx.x</tt>.
       */
      __device__ __forceinline__ WarpScan(
          TempStorage &temp_storage)             ///< [in] Reference to memory allocation having layout type TempStorage
      :
          temp_storage(temp_storage.Alias()),
          lane_id(IS_ARCH_WARP ?
              LaneId() :
              LaneId() % LOGICAL_WARP_THREADS)
      {}
  
  
      //@}  end member group
      /******************************************************************//**
       * 
  ame Inclusive prefix sums
       *********************************************************************/
      //@{
  
  
      /**
       * \brief Computes an inclusive prefix sum across the calling warp.
       *
       * \par
       * - \smemreuse
       *
       * \par Snippet
       * The code snippet below illustrates four concurrent warp-wide inclusive prefix sums within a block of
       * 128 threads (one per each of the 32-thread warps).
       * \par
       * \code
       * #include <cub/cub.cuh>
       *
       * __global__ void ExampleKernel(...)
       * {
       *     // Specialize WarpScan for type int
       *     typedef cub::WarpScan<int> WarpScan;
       *
       *     // Allocate WarpScan shared memory for 4 warps
       *     __shared__ typename WarpScan::TempStorage temp_storage[4];
       *
       *     // Obtain one input item per thread
       *     int thread_data = ...
       *
       *     // Compute inclusive warp-wide prefix sums
       *     int warp_id = threadIdx.x / 32;
       *     WarpScan(temp_storage[warp_id]).InclusiveSum(thread_data, thread_data);
       *
       * \endcode
       * \par
       * Suppose the set of input \p thread_data across the block of threads is <tt>{1, 1, 1, 1, ...}</tt>.
       * The corresponding output \p thread_data in each of the four warps of threads will be
       * <tt>1, 2, 3, ..., 32}</tt>.
       */
      __device__ __forceinline__ void InclusiveSum(
          T               input,              ///< [in] Calling thread's input item.
          T               &inclusive_output)  ///< [out] Calling thread's output item.  May be aliased with \p input.
      {
          InclusiveScan(input, inclusive_output, cub::Sum());
      }
  
  
      /**
       * \brief Computes an inclusive prefix sum across the calling warp.  Also provides every thread with the warp-wide \p warp_aggregate of all inputs.
       *
       * \par
       * - \smemreuse
       *
       * \par Snippet
       * The code snippet below illustrates four concurrent warp-wide inclusive prefix sums within a block of
       * 128 threads (one per each of the 32-thread warps).
       * \par
       * \code
       * #include <cub/cub.cuh>
       *
       * __global__ void ExampleKernel(...)
       * {
       *     // Specialize WarpScan for type int
       *     typedef cub::WarpScan<int> WarpScan;
       *
       *     // Allocate WarpScan shared memory for 4 warps
       *     __shared__ typename WarpScan::TempStorage temp_storage[4];
       *
       *     // Obtain one input item per thread
       *     int thread_data = ...
       *
       *     // Compute inclusive warp-wide prefix sums
       *     int warp_aggregate;
       *     int warp_id = threadIdx.x / 32;
       *     WarpScan(temp_storage[warp_id]).InclusiveSum(thread_data, thread_data, warp_aggregate);
       *
       * \endcode
       * \par
       * Suppose the set of input \p thread_data across the block of threads is <tt>{1, 1, 1, 1, ...}</tt>.
       * The corresponding output \p thread_data in each of the four warps of threads will be
       * <tt>1, 2, 3, ..., 32}</tt>.  Furthermore, \p warp_aggregate for all threads in all warps will be \p 32.
       */
      __device__ __forceinline__ void InclusiveSum(
          T               input,              ///< [in] Calling thread's input item.
          T               &inclusive_output,  ///< [out] Calling thread's output item.  May be aliased with \p input.
          T               &warp_aggregate)    ///< [out] Warp-wide aggregate reduction of input items.
      {
          InclusiveScan(input, inclusive_output, cub::Sum(), warp_aggregate);
      }
  
  
      //@}  end member group
      /******************************************************************//**
       * 
  ame Exclusive prefix sums
       *********************************************************************/
      //@{
  
  
      /**
       * \brief Computes an exclusive prefix sum across the calling warp.  The value of 0 is applied as the initial value, and is assigned to \p exclusive_output in <em>thread</em><sub>0</sub>.
       *
       * \par
       *  - \identityzero
       *  - \smemreuse
       *
       * \par Snippet
       * The code snippet below illustrates four concurrent warp-wide exclusive prefix sums within a block of
       * 128 threads (one per each of the 32-thread warps).
       * \par
       * \code
       * #include <cub/cub.cuh>
       *
       * __global__ void ExampleKernel(...)
       * {
       *     // Specialize WarpScan for type int
       *     typedef cub::WarpScan<int> WarpScan;
       *
       *     // Allocate WarpScan shared memory for 4 warps
       *     __shared__ typename WarpScan::TempStorage temp_storage[4];
       *
       *     // Obtain one input item per thread
       *     int thread_data = ...
       *
       *     // Compute exclusive warp-wide prefix sums
       *     int warp_id = threadIdx.x / 32;
       *     WarpScan(temp_storage[warp_id]).ExclusiveSum(thread_data, thread_data);
       *
       * \endcode
       * \par
       * Suppose the set of input \p thread_data across the block of threads is <tt>{1, 1, 1, 1, ...}</tt>.
       * The corresponding output \p thread_data in each of the four warps of threads will be
       * <tt>0, 1, 2, ..., 31}</tt>.
       *
       */
      __device__ __forceinline__ void ExclusiveSum(
          T               input,              ///< [in] Calling thread's input item.
          T               &exclusive_output)  ///< [out] Calling thread's output item.  May be aliased with \p input.
      {
          T initial_value = 0;
          ExclusiveScan(input, exclusive_output, initial_value, cub::Sum());
      }
  
  
      /**
       * \brief Computes an exclusive prefix sum across the calling warp.  The value of 0 is applied as the initial value, and is assigned to \p exclusive_output in <em>thread</em><sub>0</sub>.  Also provides every thread with the warp-wide \p warp_aggregate of all inputs.
       *
       * \par
       *  - \identityzero
       *  - \smemreuse
       *
       * \par Snippet
       * The code snippet below illustrates four concurrent warp-wide exclusive prefix sums within a block of
       * 128 threads (one per each of the 32-thread warps).
       * \par
       * \code
       * #include <cub/cub.cuh>
       *
       * __global__ void ExampleKernel(...)
       * {
       *     // Specialize WarpScan for type int
       *     typedef cub::WarpScan<int> WarpScan;
       *
       *     // Allocate WarpScan shared memory for 4 warps
       *     __shared__ typename WarpScan::TempStorage temp_storage[4];
       *
       *     // Obtain one input item per thread
       *     int thread_data = ...
       *
       *     // Compute exclusive warp-wide prefix sums
       *     int warp_aggregate;
       *     int warp_id = threadIdx.x / 32;
       *     WarpScan(temp_storage[warp_id]).ExclusiveSum(thread_data, thread_data, warp_aggregate);
       *
       * \endcode
       * \par
       * Suppose the set of input \p thread_data across the block of threads is <tt>{1, 1, 1, 1, ...}</tt>.
       * The corresponding output \p thread_data in each of the four warps of threads will be
       * <tt>0, 1, 2, ..., 31}</tt>.  Furthermore, \p warp_aggregate for all threads in all warps will be \p 32.
       */
      __device__ __forceinline__ void ExclusiveSum(
          T               input,              ///< [in] Calling thread's input item.
          T               &exclusive_output,  ///< [out] Calling thread's output item.  May be aliased with \p input.
          T               &warp_aggregate)    ///< [out] Warp-wide aggregate reduction of input items.
      {
          T initial_value = 0;
          ExclusiveScan(input, exclusive_output, initial_value, cub::Sum(), warp_aggregate);
      }
  
  
      //@}  end member group
      /******************************************************************//**
       * 
  ame Inclusive prefix scans
       *********************************************************************/
      //@{
  
      /**
       * \brief Computes an inclusive prefix scan using the specified binary scan functor across the calling warp.
       *
       * \par
       *  - \smemreuse
       *
       * \par Snippet
       * The code snippet below illustrates four concurrent warp-wide inclusive prefix max scans within a block of
       * 128 threads (one per each of the 32-thread warps).
       * \par
       * \code
       * #include <cub/cub.cuh>
       *
       * __global__ void ExampleKernel(...)
       * {
       *     // Specialize WarpScan for type int
       *     typedef cub::WarpScan<int> WarpScan;
       *
       *     // Allocate WarpScan shared memory for 4 warps
       *     __shared__ typename WarpScan::TempStorage temp_storage[4];
       *
       *     // Obtain one input item per thread
       *     int thread_data = ...
       *
       *     // Compute inclusive warp-wide prefix max scans
       *     int warp_id = threadIdx.x / 32;
       *     WarpScan(temp_storage[warp_id]).InclusiveScan(thread_data, thread_data, cub::Max());
       *
       * \endcode
       * \par
       * Suppose the set of input \p thread_data across the block of threads is <tt>{0, -1, 2, -3, ..., 126, -127}</tt>.
       * The corresponding output \p thread_data in the first warp would be
       * <tt>0, 0, 2, 2, ..., 30, 30</tt>, the output for the second warp would be <tt>32, 32, 34, 34, ..., 62, 62</tt>, etc.
       *
       * \tparam ScanOp     <b>[inferred]</b> Binary scan operator type having member <tt>T operator()(const T &a, const T &b)</tt>
       */
      template <typename ScanOp>
      __device__ __forceinline__ void InclusiveScan(
          T               input,              ///< [in] Calling thread's input item.
          T               &inclusive_output,  ///< [out] Calling thread's output item.  May be aliased with \p input.
          ScanOp          scan_op)            ///< [in] Binary scan operator
      {
          InternalWarpScan(temp_storage).InclusiveScan(input, inclusive_output, scan_op);
      }
  
  
      /**
       * \brief Computes an inclusive prefix scan using the specified binary scan functor across the calling warp.  Also provides every thread with the warp-wide \p warp_aggregate of all inputs.
       *
       * \par
       * - \smemreuse
       *
       * \par Snippet
       * The code snippet below illustrates four concurrent warp-wide inclusive prefix max scans within a block of
       * 128 threads (one per each of the 32-thread warps).
       * \par
       * \code
       * #include <cub/cub.cuh>
       *
       * __global__ void ExampleKernel(...)
       * {
       *     // Specialize WarpScan for type int
       *     typedef cub::WarpScan<int> WarpScan;
       *
       *     // Allocate WarpScan shared memory for 4 warps
       *     __shared__ typename WarpScan::TempStorage temp_storage[4];
       *
       *     // Obtain one input item per thread
       *     int thread_data = ...
       *
       *     // Compute inclusive warp-wide prefix max scans
       *     int warp_aggregate;
       *     int warp_id = threadIdx.x / 32;
       *     WarpScan(temp_storage[warp_id]).InclusiveScan(
       *         thread_data, thread_data, cub::Max(), warp_aggregate);
       *
       * \endcode
       * \par
       * Suppose the set of input \p thread_data across the block of threads is <tt>{0, -1, 2, -3, ..., 126, -127}</tt>.
       * The corresponding output \p thread_data in the first warp would be
       * <tt>0, 0, 2, 2, ..., 30, 30</tt>, the output for the second warp would be <tt>32, 32, 34, 34, ..., 62, 62</tt>, etc.
       * Furthermore, \p warp_aggregate would be assigned \p 30 for threads in the first warp, \p 62 for threads
       * in the second warp, etc.
       *
       * \tparam ScanOp     <b>[inferred]</b> Binary scan operator type having member <tt>T operator()(const T &a, const T &b)</tt>
       */
      template <typename ScanOp>
      __device__ __forceinline__ void InclusiveScan(
          T               input,              ///< [in] Calling thread's input item.
          T               &inclusive_output,  ///< [out] Calling thread's output item.  May be aliased with \p input.
          ScanOp          scan_op,            ///< [in] Binary scan operator
          T               &warp_aggregate)    ///< [out] Warp-wide aggregate reduction of input items.
      {
          InternalWarpScan(temp_storage).InclusiveScan(input, inclusive_output, scan_op, warp_aggregate);
      }
  
  
      //@}  end member group
      /******************************************************************//**
       * 
  ame Exclusive prefix scans
       *********************************************************************/
      //@{
  
      /**
       * \brief Computes an exclusive prefix scan using the specified binary scan functor across the calling warp.  Because no initial value is supplied, the \p output computed for <em>warp-lane</em><sub>0</sub> is undefined.
       *
       * \par
       * - \smemreuse
       *
       * \par Snippet
       * The code snippet below illustrates four concurrent warp-wide exclusive prefix max scans within a block of
       * 128 threads (one per each of the 32-thread warps).
       * \par
       * \code
       * #include <cub/cub.cuh>
       *
       * __global__ void ExampleKernel(...)
       * {
       *     // Specialize WarpScan for type int
       *     typedef cub::WarpScan<int> WarpScan;
       *
       *     // Allocate WarpScan shared memory for 4 warps
       *     __shared__ typename WarpScan::TempStorage temp_storage[4];
       *
       *     // Obtain one input item per thread
       *     int thread_data = ...
       *
       *     // Compute exclusive warp-wide prefix max scans
       *     int warp_id = threadIdx.x / 32;
       *     WarpScan(temp_storage[warp_id]).ExclusiveScan(thread_data, thread_data, cub::Max());
       *
       * \endcode
       * \par
       * Suppose the set of input \p thread_data across the block of threads is <tt>{0, -1, 2, -3, ..., 126, -127}</tt>.
       * The corresponding output \p thread_data in the first warp would be
       * <tt>?, 0, 0, 2, ..., 28, 30</tt>, the output for the second warp would be <tt>?, 32, 32, 34, ..., 60, 62</tt>, etc.
       * (The output \p thread_data in warp lane<sub>0</sub> is undefined.)
       *
       * \tparam ScanOp     <b>[inferred]</b> Binary scan operator type having member <tt>T operator()(const T &a, const T &b)</tt>
       */
      template <typename ScanOp>
      __device__ __forceinline__ void ExclusiveScan(
          T               input,              ///< [in] Calling thread's input item.
          T               &exclusive_output,  ///< [out] Calling thread's output item.  May be aliased with \p input.
          ScanOp          scan_op)            ///< [in] Binary scan operator
      {
          InternalWarpScan internal(temp_storage);
  
          T inclusive_output;
          internal.InclusiveScan(input, inclusive_output, scan_op);
  
          internal.Update(
              input,
              inclusive_output,
              exclusive_output,
              scan_op,
              Int2Type<IS_INTEGER>());
      }
  
  
      /**
       * \brief Computes an exclusive prefix scan using the specified binary scan functor across the calling warp.
       *
       * \par
       * - \smemreuse
       *
       * \par Snippet
       * The code snippet below illustrates four concurrent warp-wide exclusive prefix max scans within a block of
       * 128 threads (one per each of the 32-thread warps).
       * \par
       * \code
       * #include <cub/cub.cuh>
       *
       * __global__ void ExampleKernel(...)
       * {
       *     // Specialize WarpScan for type int
       *     typedef cub::WarpScan<int> WarpScan;
       *
       *     // Allocate WarpScan shared memory for 4 warps
       *     __shared__ typename WarpScan::TempStorage temp_storage[4];
       *
       *     // Obtain one input item per thread
       *     int thread_data = ...
       *
       *     // Compute exclusive warp-wide prefix max scans
       *     int warp_id = threadIdx.x / 32;
       *     WarpScan(temp_storage[warp_id]).ExclusiveScan(thread_data, thread_data, INT_MIN, cub::Max());
       *
       * \endcode
       * \par
       * Suppose the set of input \p thread_data across the block of threads is <tt>{0, -1, 2, -3, ..., 126, -127}</tt>.
       * The corresponding output \p thread_data in the first warp would be
       * <tt>INT_MIN, 0, 0, 2, ..., 28, 30</tt>, the output for the second warp would be <tt>30, 32, 32, 34, ..., 60, 62</tt>, etc.
       *
       * \tparam ScanOp     <b>[inferred]</b> Binary scan operator type having member <tt>T operator()(const T &a, const T &b)</tt>
       */
      template <typename ScanOp>
      __device__ __forceinline__ void ExclusiveScan(
          T               input,              ///< [in] Calling thread's input item.
          T               &exclusive_output,  ///< [out] Calling thread's output item.  May be aliased with \p input.
          T               initial_value,      ///< [in] Initial value to seed the exclusive scan
          ScanOp          scan_op)            ///< [in] Binary scan operator
      {
          InternalWarpScan internal(temp_storage);
  
          T inclusive_output;
          internal.InclusiveScan(input, inclusive_output, scan_op);
  
          internal.Update(
              input,
              inclusive_output,
              exclusive_output,
              scan_op,
              initial_value,
              Int2Type<IS_INTEGER>());
      }
  
  
      /**
       * \brief Computes an exclusive prefix scan using the specified binary scan functor across the calling warp.  Because no initial value is supplied, the \p output computed for <em>warp-lane</em><sub>0</sub> is undefined.  Also provides every thread with the warp-wide \p warp_aggregate of all inputs.
       *
       * \par
       * - \smemreuse
       *
       * \par Snippet
       * The code snippet below illustrates four concurrent warp-wide exclusive prefix max scans within a block of
       * 128 threads (one per each of the 32-thread warps).
       * \par
       * \code
       * #include <cub/cub.cuh>
       *
       * __global__ void ExampleKernel(...)
       * {
       *     // Specialize WarpScan for type int
       *     typedef cub::WarpScan<int> WarpScan;
       *
       *     // Allocate WarpScan shared memory for 4 warps
       *     __shared__ typename WarpScan::TempStorage temp_storage[4];
       *
       *     // Obtain one input item per thread
       *     int thread_data = ...
       *
       *     // Compute exclusive warp-wide prefix max scans
       *     int warp_aggregate;
       *     int warp_id = threadIdx.x / 32;
       *     WarpScan(temp_storage[warp_id]).ExclusiveScan(thread_data, thread_data, cub::Max(), warp_aggregate);
       *
       * \endcode
       * \par
       * Suppose the set of input \p thread_data across the block of threads is <tt>{0, -1, 2, -3, ..., 126, -127}</tt>.
       * The corresponding output \p thread_data in the first warp would be
       * <tt>?, 0, 0, 2, ..., 28, 30</tt>, the output for the second warp would be <tt>?, 32, 32, 34, ..., 60, 62</tt>, etc.
       * (The output \p thread_data in warp lane<sub>0</sub> is undefined.)  Furthermore, \p warp_aggregate would be assigned \p 30 for threads in the first warp, \p 62 for threads
       * in the second warp, etc.
       *
       * \tparam ScanOp     <b>[inferred]</b> Binary scan operator type having member <tt>T operator()(const T &a, const T &b)</tt>
       */
      template <typename ScanOp>
      __device__ __forceinline__ void ExclusiveScan(
          T               input,              ///< [in] Calling thread's input item.
          T               &exclusive_output,   ///< [out] Calling thread's output item.  May be aliased with \p input.
          ScanOp          scan_op,            ///< [in] Binary scan operator
          T               &warp_aggregate)    ///< [out] Warp-wide aggregate reduction of input items.
      {
          InternalWarpScan internal(temp_storage);
  
          T inclusive_output;
          internal.InclusiveScan(input, inclusive_output, scan_op);
  
          internal.Update(
              input,
              inclusive_output,
              exclusive_output,
              warp_aggregate,
              scan_op,
              Int2Type<IS_INTEGER>());
      }
  
  
      /**
       * \brief Computes an exclusive prefix scan using the specified binary scan functor across the calling warp.  Also provides every thread with the warp-wide \p warp_aggregate of all inputs.
       *
       * \par
       * - \smemreuse
       *
       * \par Snippet
       * The code snippet below illustrates four concurrent warp-wide exclusive prefix max scans within a block of
       * 128 threads (one per each of the 32-thread warps).
       * \par
       * \code
       * #include <cub/cub.cuh>
       *
       * __global__ void ExampleKernel(...)
       * {
       *     // Specialize WarpScan for type int
       *     typedef cub::WarpScan<int> WarpScan;
       *
       *     // Allocate WarpScan shared memory for 4 warps
       *     __shared__ typename WarpScan::TempStorage temp_storage[4];
       *
       *     // Obtain one input item per thread
       *     int thread_data = ...
       *
       *     // Compute exclusive warp-wide prefix max scans
       *     int warp_aggregate;
       *     int warp_id = threadIdx.x / 32;
       *     WarpScan(temp_storage[warp_id]).ExclusiveScan(thread_data, thread_data, INT_MIN, cub::Max(), warp_aggregate);
       *
       * \endcode
       * \par
       * Suppose the set of input \p thread_data across the block of threads is <tt>{0, -1, 2, -3, ..., 126, -127}</tt>.
       * The corresponding output \p thread_data in the first warp would be
       * <tt>INT_MIN, 0, 0, 2, ..., 28, 30</tt>, the output for the second warp would be <tt>30, 32, 32, 34, ..., 60, 62</tt>, etc.
       * Furthermore, \p warp_aggregate would be assigned \p 30 for threads in the first warp, \p 62 for threads
       * in the second warp, etc.
       *
       * \tparam ScanOp     <b>[inferred]</b> Binary scan operator type having member <tt>T operator()(const T &a, const T &b)</tt>
       */
      template <typename ScanOp>
      __device__ __forceinline__ void ExclusiveScan(
          T               input,              ///< [in] Calling thread's input item.
          T               &exclusive_output,  ///< [out] Calling thread's output item.  May be aliased with \p input.
          T               initial_value,      ///< [in] Initial value to seed the exclusive scan
          ScanOp          scan_op,            ///< [in] Binary scan operator
          T               &warp_aggregate)    ///< [out] Warp-wide aggregate reduction of input items.
      {
          InternalWarpScan internal(temp_storage);
  
          T inclusive_output;
          internal.InclusiveScan(input, inclusive_output, scan_op);
  
          internal.Update(
              input,
              inclusive_output,
              exclusive_output,
              warp_aggregate,
              scan_op,
              initial_value,
              Int2Type<IS_INTEGER>());
      }
  
  
      //@}  end member group
      /******************************************************************//**
       * 
  ame Combination (inclusive & exclusive) prefix scans
       *********************************************************************/
      //@{
  
  
      /**
       * \brief Computes both inclusive and exclusive prefix scans using the specified binary scan functor across the calling warp.  Because no initial value is supplied, the \p exclusive_output computed for <em>warp-lane</em><sub>0</sub> is undefined.
       *
       * \par
       * - \smemreuse
       *
       * \par Snippet
       * The code snippet below illustrates four concurrent warp-wide exclusive prefix max scans within a block of
       * 128 threads (one per each of the 32-thread warps).
       * \par
       * \code
       * #include <cub/cub.cuh>
       *
       * __global__ void ExampleKernel(...)
       * {
       *     // Specialize WarpScan for type int
       *     typedef cub::WarpScan<int> WarpScan;
       *
       *     // Allocate WarpScan shared memory for 4 warps
       *     __shared__ typename WarpScan::TempStorage temp_storage[4];
       *
       *     // Obtain one input item per thread
       *     int thread_data = ...
       *
       *     // Compute exclusive warp-wide prefix max scans
       *     int inclusive_partial, exclusive_partial;
       *     WarpScan(temp_storage[warp_id]).Scan(thread_data, inclusive_partial, exclusive_partial, cub::Max());
       *
       * \endcode
       * \par
       * Suppose the set of input \p thread_data across the block of threads is <tt>{0, -1, 2, -3, ..., 126, -127}</tt>.
       * The corresponding output \p inclusive_partial in the first warp would be
       * <tt>0, 0, 2, 2, ..., 30, 30</tt>, the output for the second warp would be <tt>32, 32, 34, 34, ..., 62, 62</tt>, etc.
       * The corresponding output \p exclusive_partial in the first warp would be
       * <tt>?, 0, 0, 2, ..., 28, 30</tt>, the output for the second warp would be <tt>?, 32, 32, 34, ..., 60, 62</tt>, etc.
       * (The output \p thread_data in warp lane<sub>0</sub> is undefined.)
       *
       * \tparam ScanOp     <b>[inferred]</b> Binary scan operator type having member <tt>T operator()(const T &a, const T &b)</tt>
       */
      template <typename ScanOp>
      __device__ __forceinline__ void Scan(
          T               input,              ///< [in] Calling thread's input item.
          T               &inclusive_output,  ///< [out] Calling thread's inclusive-scan output item.
          T               &exclusive_output,  ///< [out] Calling thread's exclusive-scan output item.
          ScanOp          scan_op)            ///< [in] Binary scan operator
      {
          InternalWarpScan internal(temp_storage);
  
          internal.InclusiveScan(input, inclusive_output, scan_op);
  
          internal.Update(
              input,
              inclusive_output,
              exclusive_output,
              scan_op,
              Int2Type<IS_INTEGER>());
      }
  
  
      /**
       * \brief Computes both inclusive and exclusive prefix scans using the specified binary scan functor across the calling warp.
       *
       * \par
       *  - \smemreuse
       *
       * \par Snippet
       * The code snippet below illustrates four concurrent warp-wide prefix max scans within a block of
       * 128 threads (one per each of the 32-thread warps).
       * \par
       * \code
       * #include <cub/cub.cuh>
       *
       * __global__ void ExampleKernel(...)
       * {
       *     // Specialize WarpScan for type int
       *     typedef cub::WarpScan<int> WarpScan;
       *
       *     // Allocate WarpScan shared memory for 4 warps
       *     __shared__ typename WarpScan::TempStorage temp_storage[4];
       *
       *     // Obtain one input item per thread
       *     int thread_data = ...
       *
       *     // Compute inclusive warp-wide prefix max scans
       *     int warp_id = threadIdx.x / 32;
       *     int inclusive_partial, exclusive_partial;
       *     WarpScan(temp_storage[warp_id]).Scan(thread_data, inclusive_partial, exclusive_partial, INT_MIN, cub::Max());
       *
       * \endcode
       * \par
       * Suppose the set of input \p thread_data across the block of threads is <tt>{0, -1, 2, -3, ..., 126, -127}</tt>.
       * The corresponding output \p inclusive_partial in the first warp would be
       * <tt>0, 0, 2, 2, ..., 30, 30</tt>, the output for the second warp would be <tt>32, 32, 34, 34, ..., 62, 62</tt>, etc.
       * The corresponding output \p exclusive_partial in the first warp would be
       * <tt>INT_MIN, 0, 0, 2, ..., 28, 30</tt>, the output for the second warp would be <tt>30, 32, 32, 34, ..., 60, 62</tt>, etc.
       *
       * \tparam ScanOp     <b>[inferred]</b> Binary scan operator type having member <tt>T operator()(const T &a, const T &b)</tt>
       */
      template <typename ScanOp>
      __device__ __forceinline__ void Scan(
          T               input,              ///< [in] Calling thread's input item.
          T               &inclusive_output,  ///< [out] Calling thread's inclusive-scan output item.
          T               &exclusive_output,  ///< [out] Calling thread's exclusive-scan output item.
          T               initial_value,      ///< [in] Initial value to seed the exclusive scan
          ScanOp          scan_op)            ///< [in] Binary scan operator
      {
          InternalWarpScan internal(temp_storage);
  
          internal.InclusiveScan(input, inclusive_output, scan_op);
  
          internal.Update(
              input,
              inclusive_output,
              exclusive_output,
              scan_op,
              initial_value,
              Int2Type<IS_INTEGER>());
      }
  
  
  
      //@}  end member group
      /******************************************************************//**
       * 
  ame Data exchange
       *********************************************************************/
      //@{
  
      /**
       * \brief Broadcast the value \p input from <em>warp-lane</em><sub><tt>src_lane</tt></sub> to all lanes in the warp
       *
       * \par
       * - \smemreuse
       *
       * \par Snippet
       * The code snippet below illustrates the warp-wide broadcasts of values from
       * lanes<sub>0</sub> in each of four warps to all other threads in those warps.
       * \par
       * \code
       * #include <cub/cub.cuh>
       *
       * __global__ void ExampleKernel(...)
       * {
       *     // Specialize WarpScan for type int
       *     typedef cub::WarpScan<int> WarpScan;
       *
       *     // Allocate WarpScan shared memory for 4 warps
       *     __shared__ typename WarpScan::TempStorage temp_storage[4];
       *
       *     // Obtain one input item per thread
       *     int thread_data = ...
       *
       *     // Broadcast from lane0 in each warp to all other threads in the warp
       *     int warp_id = threadIdx.x / 32;
       *     thread_data = WarpScan(temp_storage[warp_id]).Broadcast(thread_data, 0);
       *
       * \endcode
       * \par
       * Suppose the set of input \p thread_data across the block of threads is <tt>{0, 1, 2, 3, ..., 127}</tt>.
       * The corresponding output \p thread_data will be
       * <tt>{0, 0, ..., 0}</tt> in warp<sub>0</sub>,
       * <tt>{32, 32, ..., 32}</tt> in warp<sub>1</sub>,
       * <tt>{64, 64, ..., 64}</tt> in warp<sub>2</sub>, etc.
       */
      __device__ __forceinline__ T Broadcast(
          T               input,              ///< [in] The value to broadcast
          unsigned int    src_lane)           ///< [in] Which warp lane is to do the broadcasting
      {
          return InternalWarpScan(temp_storage).Broadcast(input, src_lane);
      }
  
      //@}  end member group
  
  };
  
  /** @} */       // end group WarpModule
  
  }               // CUB namespace
  CUB_NS_POSTFIX  // Optional outer namespace(s)