Blame view
tools/cub-1.8.0/examples/block/example_block_reduce.cu
9.42 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 |
/****************************************************************************** * Copyright (c) 2011, Duane Merrill. All rights reserved. * Copyright (c) 2011-2018, NVIDIA CORPORATION. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of the NVIDIA CORPORATION nor the * names of its contributors may be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * ******************************************************************************/ /****************************************************************************** * Simple demonstration of cub::BlockReduce * * To compile using the command line: * nvcc -arch=sm_XX example_block_reduce.cu -I../.. -lcudart -O3 * ******************************************************************************/ // Ensure printing of CUDA runtime errors to console (define before including cub.h) #define CUB_STDERR #include <stdio.h> #include <iostream> #include <cub/block/block_load.cuh> #include <cub/block/block_store.cuh> #include <cub/block/block_reduce.cuh> #include "../../test/test_util.h" using namespace cub; //--------------------------------------------------------------------- // Globals, constants and typedefs //--------------------------------------------------------------------- /// Verbose output bool g_verbose = false; /// Timing iterations int g_timing_iterations = 100; /// Default grid size int g_grid_size = 1; //--------------------------------------------------------------------- // Kernels //--------------------------------------------------------------------- /** * Simple kernel for performing a block-wide exclusive prefix sum over integers */ template < int BLOCK_THREADS, int ITEMS_PER_THREAD, BlockReduceAlgorithm ALGORITHM> __global__ void BlockSumKernel( int *d_in, // Tile of input int *d_out, // Tile aggregate clock_t *d_elapsed) // Elapsed cycle count of block reduction { // Specialize BlockReduce type for our thread block typedef BlockReduce<int, BLOCK_THREADS, ALGORITHM> BlockReduceT; // Shared memory __shared__ typename BlockReduceT::TempStorage temp_storage; // Per-thread tile data int data[ITEMS_PER_THREAD]; LoadDirectStriped<BLOCK_THREADS>(threadIdx.x, d_in, data); // Start cycle timer clock_t start = clock(); // Compute sum int aggregate = BlockReduceT(temp_storage).Sum(data); // Stop cycle timer clock_t stop = clock(); // Store aggregate and elapsed clocks if (threadIdx.x == 0) { *d_elapsed = (start > stop) ? start - stop : stop - start; *d_out = aggregate; } } //--------------------------------------------------------------------- // Host utilities //--------------------------------------------------------------------- /** * Initialize reduction problem (and solution). * Returns the aggregate */ int Initialize(int *h_in, int num_items) { int inclusive = 0; for (int i = 0; i < num_items; ++i) { h_in[i] = i % 17; inclusive += h_in[i]; } return inclusive; } /** * Test thread block reduction */ template < int BLOCK_THREADS, int ITEMS_PER_THREAD, BlockReduceAlgorithm ALGORITHM> void Test() { const int TILE_SIZE = BLOCK_THREADS * ITEMS_PER_THREAD; // Allocate host arrays int *h_in = new int[TILE_SIZE]; int *h_gpu = new int[TILE_SIZE + 1]; // Initialize problem and reference output on host int h_aggregate = Initialize(h_in, TILE_SIZE); // Initialize device arrays int *d_in = NULL; int *d_out = NULL; clock_t *d_elapsed = NULL; cudaMalloc((void**)&d_in, sizeof(int) * TILE_SIZE); cudaMalloc((void**)&d_out, sizeof(int) * 1); cudaMalloc((void**)&d_elapsed, sizeof(clock_t)); // Display input problem data if (g_verbose) { printf("Input data: "); for (int i = 0; i < TILE_SIZE; i++) printf("%d, ", h_in[i]); printf(" "); } // Kernel props int max_sm_occupancy; CubDebugExit(MaxSmOccupancy(max_sm_occupancy, BlockSumKernel<BLOCK_THREADS, ITEMS_PER_THREAD, ALGORITHM>, BLOCK_THREADS)); // Copy problem to device cudaMemcpy(d_in, h_in, sizeof(int) * TILE_SIZE, cudaMemcpyHostToDevice); printf("BlockReduce algorithm %s on %d items (%d timing iterations, %d blocks, %d threads, %d items per thread, %d SM occupancy): ", (ALGORITHM == BLOCK_REDUCE_RAKING) ? "BLOCK_REDUCE_RAKING" : "BLOCK_REDUCE_WARP_REDUCTIONS", TILE_SIZE, g_timing_iterations, g_grid_size, BLOCK_THREADS, ITEMS_PER_THREAD, max_sm_occupancy); // Run aggregate/prefix kernel BlockSumKernel<BLOCK_THREADS, ITEMS_PER_THREAD, ALGORITHM><<<g_grid_size, BLOCK_THREADS>>>( d_in, d_out, d_elapsed); // Check total aggregate printf("\tAggregate: "); int compare = CompareDeviceResults(&h_aggregate, d_out, 1, g_verbose, g_verbose); printf("%s ", compare ? "FAIL" : "PASS"); AssertEquals(0, compare); // Run this several times and average the performance results GpuTimer timer; float elapsed_millis = 0.0; clock_t elapsed_clocks = 0; for (int i = 0; i < g_timing_iterations; ++i) { // Copy problem to device cudaMemcpy(d_in, h_in, sizeof(int) * TILE_SIZE, cudaMemcpyHostToDevice); timer.Start(); // Run aggregate/prefix kernel BlockSumKernel<BLOCK_THREADS, ITEMS_PER_THREAD, ALGORITHM><<<g_grid_size, BLOCK_THREADS>>>( d_in, d_out, d_elapsed); timer.Stop(); elapsed_millis += timer.ElapsedMillis(); // Copy clocks from device clock_t clocks; CubDebugExit(cudaMemcpy(&clocks, d_elapsed, sizeof(clock_t), cudaMemcpyDeviceToHost)); elapsed_clocks += clocks; } // Check for kernel errors and STDIO from the kernel, if any CubDebugExit(cudaPeekAtLastError()); CubDebugExit(cudaDeviceSynchronize()); // Display timing results float avg_millis = elapsed_millis / g_timing_iterations; float avg_items_per_sec = float(TILE_SIZE * g_grid_size) / avg_millis / 1000.0f; float avg_clocks = float(elapsed_clocks) / g_timing_iterations; float avg_clocks_per_item = avg_clocks / TILE_SIZE; printf("\tAverage BlockReduce::Sum clocks: %.3f ", avg_clocks); printf("\tAverage BlockReduce::Sum clocks per item: %.3f ", avg_clocks_per_item); printf("\tAverage kernel millis: %.4f ", avg_millis); printf("\tAverage million items / sec: %.4f ", avg_items_per_sec); // Cleanup if (h_in) delete[] h_in; if (h_gpu) delete[] h_gpu; if (d_in) cudaFree(d_in); if (d_out) cudaFree(d_out); if (d_elapsed) cudaFree(d_elapsed); } /** * Main */ int main(int argc, char** argv) { // Initialize command line CommandLineArgs args(argc, argv); g_verbose = args.CheckCmdLineFlag("v"); args.GetCmdLineArgument("i", g_timing_iterations); args.GetCmdLineArgument("grid-size", g_grid_size); // Print usage if (args.CheckCmdLineFlag("help")) { printf("%s " "[--device=<device-id>] " "[--i=<timing iterations>] " "[--grid-size=<grid size>] " "[--v] " " ", argv[0]); exit(0); } // Initialize device CubDebugExit(args.DeviceInit()); // Run tests Test<1024, 1, BLOCK_REDUCE_RAKING>(); Test<512, 2, BLOCK_REDUCE_RAKING>(); Test<256, 4, BLOCK_REDUCE_RAKING>(); Test<128, 8, BLOCK_REDUCE_RAKING>(); Test<64, 16, BLOCK_REDUCE_RAKING>(); Test<32, 32, BLOCK_REDUCE_RAKING>(); Test<16, 64, BLOCK_REDUCE_RAKING>(); printf("------------- "); Test<1024, 1, BLOCK_REDUCE_WARP_REDUCTIONS>(); Test<512, 2, BLOCK_REDUCE_WARP_REDUCTIONS>(); Test<256, 4, BLOCK_REDUCE_WARP_REDUCTIONS>(); Test<128, 8, BLOCK_REDUCE_WARP_REDUCTIONS>(); Test<64, 16, BLOCK_REDUCE_WARP_REDUCTIONS>(); Test<32, 32, BLOCK_REDUCE_WARP_REDUCTIONS>(); Test<16, 64, BLOCK_REDUCE_WARP_REDUCTIONS>(); return 0; } |