// ivectorbin/logistic-regression-train.cc // Copyright 2014 David Snyder // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #include "base/kaldi-common.h" #include "util/common-utils.h" #include "ivector/logistic-regression.h" int main(int argc, char *argv[]) { using namespace kaldi; typedef kaldi::int32 int32; try { const char *usage = "Trains a model using Logistic Regression with L-BFGS from\n" "a set of vectors. The class labels in \n" "must be a set of integers such that there are no gaps in \n" "its range and the smallest label must be 0.\n" "Usage: logistic-regression-train \n" " \n"; ParseOptions po(usage); bool binary = true; LogisticRegressionConfig config; config.Register(&po); po.Register("binary", &binary, "Write output in binary mode"); po.Read(argc, argv); if (po.NumArgs() != 3) { po.PrintUsage(); exit(1); } std::string vector_rspecifier = po.GetArg(1), class_rspecifier = po.GetArg(2), model_out = po.GetArg(3); RandomAccessBaseFloatVectorReader vector_reader(vector_rspecifier); SequentialInt32Reader class_reader(class_rspecifier); std::vector ys; std::vector utt_ids; std::vector > vectors; int32 num_utt_done = 0, num_utt_err = 0; int32 num_classes = 0; for (; !class_reader.Done(); class_reader.Next()) { std::string utt = class_reader.Key(); int32 class_label = class_reader.Value(); if (!vector_reader.HasKey(utt)) { KALDI_WARN << "No vector for utterance " << utt; num_utt_err++; } else { ys.push_back(class_label); const Vector &vector = vector_reader.Value(utt); vectors.push_back(vector); // Since there are no gaps in the class labels and we // start at 0, the largest label is the number of the // of the classes - 1. if (class_label > num_classes) { num_classes = class_label; } num_utt_done++; } } // Since the largest label is 1 minus the number of // classes. num_classes += 1; KALDI_LOG << "Retrieved " << num_utt_done << " vectors with " << num_utt_err << " missing. " << "There were " << num_classes << " class labels."; if (num_utt_done == 0) KALDI_ERR << "No vectors processed. Unable to train."; Matrix xs(vectors.size(), vectors[0].Dim()); for (int i = 0; i < vectors.size(); i++) { xs.Row(i).CopyFromVec(vectors[i]); } vectors.clear(); LogisticRegression classifier = LogisticRegression(); classifier.Train(xs, ys, config); WriteKaldiObject(classifier, model_out, binary); return 0; } catch(const std::exception &e) { std::cerr << e.what(); return -1; } }