// See www.openfst.org for extensive documentation on this weighted // finite-state transducer library. // // Functions and classes to compute the concatenation of two FSTs. #ifndef FST_CONCAT_H_ #define FST_CONCAT_H_ #include #include #include #include namespace fst { // Computes the concatenation (product) of two FSTs. If FST1 transduces string // x to y with weight a and FST2 transduces string w to v with weight b, then // their concatenation transduces string xw to yv with weight Times(a, b). // // This version modifies its MutableFst argument (in first position). // // Complexity: // // Time: O(V1 + V2 + E2) // Space: O(V1 + V2 + E2) // // where Vi is the number of states, and Ei is the number of arcs, of the ith // FST. template void Concat(MutableFst *fst1, const Fst &fst2) { using Label = typename Arc::Label; using StateId = typename Arc::StateId; using Weight = typename Arc::Weight; // Checks that the symbol table are compatible. if (!CompatSymbols(fst1->InputSymbols(), fst2.InputSymbols()) || !CompatSymbols(fst1->OutputSymbols(), fst2.OutputSymbols())) { FSTERROR() << "Concat: Input/output symbol tables of 1st argument " << "does not match input/output symbol tables of 2nd argument"; fst1->SetProperties(kError, kError); return; } const auto props1 = fst1->Properties(kFstProperties, false); const auto props2 = fst2.Properties(kFstProperties, false); const auto start1 = fst1->Start(); if (start1 == kNoStateId) { if (props2 & kError) fst1->SetProperties(kError, kError); return; } const auto numstates1 = fst1->NumStates(); if (fst2.Properties(kExpanded, false)) { fst1->ReserveStates(numstates1 + CountStates(fst2)); } for (StateIterator> siter2(fst2); !siter2.Done(); siter2.Next()) { const auto s1 = fst1->AddState(); const auto s2 = siter2.Value(); fst1->SetFinal(s1, fst2.Final(s2)); fst1->ReserveArcs(s1, fst2.NumArcs(s2)); for (ArcIterator> aiter(fst2, s2); !aiter.Done(); aiter.Next()) { auto arc = aiter.Value(); arc.nextstate += numstates1; fst1->AddArc(s1, arc); } } const auto start2 = fst2.Start(); for (StateId s1 = 0; s1 < numstates1; ++s1) { const auto weight = fst1->Final(s1); if (weight != Weight::Zero()) { fst1->SetFinal(s1, Weight::Zero()); if (start2 != kNoStateId) { fst1->AddArc(s1, Arc(0, 0, weight, start2 + numstates1)); } } } if (start2 != kNoStateId) { fst1->SetProperties(ConcatProperties(props1, props2), kFstProperties); } } // Computes the concatentation of two FSTs. This version modifies its // MutableFst argument (in second position). // // Complexity: // // Time: O(V1 + E1) // Space: O(V1 + E1) // // where Vi is the number of states, and Ei is the number of arcs, of the ith // FST. template void Concat(const Fst &fst1, MutableFst *fst2) { using Label = typename Arc::Label; using StateId = typename Arc::StateId; using Weight = typename Arc::Weight; // Checks that the symbol table are compatible. if (!CompatSymbols(fst1.InputSymbols(), fst2->InputSymbols()) || !CompatSymbols(fst1.OutputSymbols(), fst2->OutputSymbols())) { FSTERROR() << "Concat: Input/output symbol tables of 1st argument " << "does not match input/output symbol tables of 2nd argument"; fst2->SetProperties(kError, kError); return; } const auto props1 = fst1.Properties(kFstProperties, false); const auto props2 = fst2->Properties(kFstProperties, false); const auto start2 = fst2->Start(); if (start2 == kNoStateId) { if (props1 & kError) fst2->SetProperties(kError, kError); return; } const auto numstates2 = fst2->NumStates(); if (fst1.Properties(kExpanded, false)) { fst2->ReserveStates(numstates2 + CountStates(fst1)); } for (StateIterator> siter(fst1); !siter.Done(); siter.Next()) { const auto s1 = siter.Value(); const auto s2 = fst2->AddState(); const auto weight = fst1.Final(s1); if (weight != Weight::Zero()) { fst2->ReserveArcs(s2, fst1.NumArcs(s1) + 1); fst2->AddArc(s2, Arc(0, 0, weight, start2)); } else { fst2->ReserveArcs(s2, fst1.NumArcs(s1)); } for (ArcIterator> aiter(fst1, s1); !aiter.Done(); aiter.Next()) { auto arc = aiter.Value(); arc.nextstate += numstates2; fst2->AddArc(s2, arc); } } const auto start1 = fst1.Start(); if (start1 != kNoStateId) { fst2->SetStart(start1 + numstates2); fst2->SetProperties(ConcatProperties(props1, props2), kFstProperties); } else { fst2->SetStart(fst2->AddState()); } } // Computes the concatentation of two FSTs. This version modifies its // RationalFst input (in first position). template void Concat(RationalFst *fst1, const Fst &fst2) { fst1->GetMutableImpl()->AddConcat(fst2, true); } // Computes the concatentation of two FSTs. This version modifies its // RationalFst input (in second position). template void Concat(const Fst &fst1, RationalFst *fst2) { fst2->GetMutableImpl()->AddConcat(fst1, false); } using ConcatFstOptions = RationalFstOptions; // Computes the concatenation (product) of two FSTs; this version is a delayed // FST. If FST1 transduces string x to y with weight a and FST2 transduces // string w to v with weight b, then their concatenation transduces string xw // to yv with Times(a, b). // // Complexity: // // Time: O(v1 + e1 + v2 + e2), // Space: O(v1 + v2) // // where vi is the number of states visited, and ei is the number of arcs // visited, of the ith FST. Constant time and space to visit an input state or // arc is assumed and exclusive of caching. template class ConcatFst : public RationalFst { public: using Arc = A; using StateId = typename Arc::StateId; using Weight = typename Arc::Weight; ConcatFst(const Fst &fst1, const Fst &fst2) { GetMutableImpl()->InitConcat(fst1, fst2); } ConcatFst(const Fst &fst1, const Fst &fst2, const ConcatFstOptions &opts) : RationalFst(opts) { GetMutableImpl()->InitConcat(fst1, fst2); } // See Fst<>::Copy() for doc. ConcatFst(const ConcatFst &fst, bool safe = false) : RationalFst(fst, safe) {} // Get a copy of this ConcatFst. See Fst<>::Copy() for further doc. ConcatFst *Copy(bool safe = false) const override { return new ConcatFst(*this, safe); } private: using ImplToFst>::GetImpl; using ImplToFst>::GetMutableImpl; }; // Specialization for ConcatFst. template class StateIterator> : public StateIterator> { public: explicit StateIterator(const ConcatFst &fst) : StateIterator>(fst) {} }; // Specialization for ConcatFst. template class ArcIterator> : public ArcIterator> { public: using StateId = typename Arc::StateId; ArcIterator(const ConcatFst &fst, StateId s) : ArcIterator>(fst, s) {} }; // Useful alias when using StdArc. using StdConcatFst = ConcatFst; } // namespace fst #endif // FST_CONCAT_H_