// See www.openfst.org for extensive documentation on this weighted // finite-state transducer library. // // Functions and classes to sort arcs in an FST. #ifndef FST_REVERSE_H_ #define FST_REVERSE_H_ #include #include #include namespace fst { // Reverses an FST. The reversed result is written to an output mutable FST. // If A transduces string x to y with weight a, then the reverse of A // transduces the reverse of x to the reverse of y with weight a.Reverse(). // // Typically, a = a.Reverse() and an arc is its own reverse (e.g., for // TropicalWeight or LogWeight). In general, e.g., when the weights only form a // left or right semiring, the output arc type must match the input arc type // except having the reversed Weight type. // // When require_superinitial is false, a superinitial state is not created in // the reversed FST iff the input FST has exactly one final state (which becomes // the initial state of the reversed FST) with a final weight of semiring One, // or if it does not belong to any cycle. When require_superinitial is true, a // superinitial state is always created. template void Reverse(const Fst &ifst, MutableFst *ofst, bool require_superinitial = true) { using StateId = typename FromArc::StateId; using FromWeight = typename FromArc::Weight; using ToWeight = typename ToArc::Weight; ofst->DeleteStates(); ofst->SetInputSymbols(ifst.InputSymbols()); ofst->SetOutputSymbols(ifst.OutputSymbols()); if (ifst.Properties(kExpanded, false)) { ofst->ReserveStates(CountStates(ifst) + 1); } StateId istart = ifst.Start(); StateId ostart = kNoStateId; StateId offset = 0; uint64 dfs_iprops = 0; uint64 dfs_oprops = 0; if (!require_superinitial) { for (StateIterator> siter(ifst); !siter.Done(); siter.Next()) { const auto s = siter.Value(); if (ifst.Final(s) == FromWeight::Zero()) continue; if (ostart != kNoStateId) { ostart = kNoStateId; break; } else { ostart = s; } } if (ostart != kNoStateId && ifst.Final(ostart) != FromWeight::One()) { std::vector scc; SccVisitor scc_visitor(&scc, nullptr, nullptr, &dfs_iprops); DfsVisit(ifst, &scc_visitor); if (count(scc.begin(), scc.end(), scc[ostart]) > 1) { ostart = kNoStateId; } else { for (ArcIterator> aiter(ifst, ostart); !aiter.Done(); aiter.Next()) { if (aiter.Value().nextstate == ostart) { ostart = kNoStateId; break; } } } if (ostart != kNoStateId) dfs_oprops = kInitialAcyclic; } } if (ostart == kNoStateId) { // Super-initial requested or needed. ostart = ofst->AddState(); offset = 1; } for (StateIterator> siter(ifst); !siter.Done(); siter.Next()) { const auto is = siter.Value(); const auto os = is + offset; while (ofst->NumStates() <= os) ofst->AddState(); if (is == istart) ofst->SetFinal(os, ToWeight::One()); const auto weight = ifst.Final(is); if ((weight != FromWeight::Zero()) && (offset == 1)) { const ToArc oarc(0, 0, weight.Reverse(), os); ofst->AddArc(0, oarc); } for (ArcIterator> aiter(ifst, is); !aiter.Done(); aiter.Next()) { const auto &iarc = aiter.Value(); const auto nos = iarc.nextstate + offset; auto weight = iarc.weight.Reverse(); if (!offset && (nos == ostart)) { weight = Times(ifst.Final(ostart).Reverse(), weight); } const ToArc oarc(iarc.ilabel, iarc.olabel, weight, os); while (ofst->NumStates() <= nos) ofst->AddState(); ofst->AddArc(nos, oarc); } } ofst->SetStart(ostart); if (offset == 0 && ostart == istart) { ofst->SetFinal(ostart, ifst.Final(ostart).Reverse()); } const auto iprops = ifst.Properties(kCopyProperties, false) | dfs_iprops; const auto oprops = ofst->Properties(kFstProperties, false) | dfs_oprops; ofst->SetProperties(ReverseProperties(iprops, offset == 1) | oprops, kFstProperties); } } // namespace fst #endif // FST_REVERSE_H_