a b c d e f g (f_0) a b c d e f g (f_1) a b c d e f g (f_2) a b c d e f g (f_3) a b c d e f g (f_4) a b c d e f g (f_5) a b c d e f g (f_6) ;;; ;;; This case fails if the alignment doesn't to an in-order traversal ;;; to initialize the alignment matrix uh uh have along which go problem of my private (g_0) uh uh have along which go problem of my private (g_1) ;;; ;;; Make sure two networks can be aligned together a {bc / b } { e d / ef} (h_0) a gh i bd e i th f (h_1) a gh i bd e i n th f (h_2) ;; Test a couple alternations in the hyp file th {e/is} is {th/t} en (i_1) th {e/is} is {th/t} en (i_2) ;; Check alternations in both the ref and hyp th { {e / @} is {w as / i / s / @ } / d is } is {th/t} en (i_3) ;; Check hyphenations (and alternations) in the ref and hyp to see if the '-F' fragment correct flag find the fish ticks milk fee him {fi-/fig-} th- fi- -icks {-lk/-ik} -offee -him (i_4) ;; Check deletions and substitutions of hyphenated words del del_withnull skip skip substitution flag sub_withnull flag (i_5) ;; Check to handle utterances without reference words a b c e f g h i j k (empty-1) d e f (empty-2) ;; Check some alternations in the hypothesis as well as in the reference a c d (alt-1) a c i d (alt-2) a d (alt-3) a {c / @} d (alt-4) a {@ / c} d (alt-5) a {d / @} d (alt-6) a d @ e (alt-7) a d e (alt-8) a {e- / @} c (alt-9) ;;; Check the handling of optionally deletable b e (od1-1) b c e (od1-2) b d e (od1-3) b c i e (od1-4) b s i e (od1-5) e (od1-6) f (od1-7) ;;;;;;;;;;;;;;;;;;; ;;; ambiguous cases s s s (od2-1) s s s (od2-2) s s s (od2-3) s s s (od2-4) s s s (od2-5) s s s (od2-6) s s s (od2-7) s s s (od2-8) s s s (od2-9) s s s (od2-10) ;;; Fragment interactions b e (od3-1) b c e (od3-2) b d e (od3-3) b c i e (od3-4) b s i e (od3-5) e (od3-6) f (od3-7) b ten the and (od3-8) ;;; Test passing through tags a aa\;a b\;b\;b;hyp\;tag1;hyptag2 b;hyptag1 c;;hyptag2 d;hyptag1;hyptag2 (tags-1) (tags-2) a aa\;a b\;b\;b;hyptag1;hyp\;tag2 b;hyptag1 c;;hyptag2 d;hyptag1;hyptag2 (tags-3) z aa\;a b\;b\;b;hyptag1;hyptag2 y;hyptag1 x;;hyptag2 w;hyptag1;hyptag2 (tags-4) { z aa\;a b\;b\;b;hyptag1;hyptag2 y;hyptag1 x;;hyptag2 w;hyptag1;hyptag2 / x x x x x x x x x x x x x } (tags-5)