// bin/align-compiled-mapped.cc // Copyright 2009-2012 Microsoft Corporation, Karel Vesely // 2014 Johns Hopkins University (Daniel Povey) // // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #include "base/kaldi-common.h" #include "util/common-utils.h" #include "hmm/transition-model.h" #include "hmm/hmm-utils.h" #include "fstext/fstext-lib.h" #include "decoder/decoder-wrappers.h" #include "decoder/training-graph-compiler.h" #include "decoder/decodable-matrix.h" #include "lat/kaldi-lattice.h" // for {Compact}LatticeArc int main(int argc, char *argv[]) { try { using namespace kaldi; typedef kaldi::int32 int32; using fst::SymbolTable; using fst::VectorFst; using fst::StdArc; const char *usage = "Generate alignments, reading log-likelihoods as matrices.\n" " (model is needed only for the integer mappings in its transition-model)\n" "Usage: align-compiled-mapped [options] trans-model-in graphs-rspecifier feature-rspecifier alignments-wspecifier\n" "e.g.: \n" " nnet-align-compiled trans.mdl ark:graphs.fsts scp:train.scp ark:nnet.ali\n" "or:\n" " compile-train-graphs tree trans.mdl lex.fst ark:train.tra b, ark:- | \\\n" " nnet-align-compiled trans.mdl ark:- scp:loglikes.scp t, ark:nnet.ali\n"; ParseOptions po(usage); AlignConfig align_config; bool binary = true; BaseFloat acoustic_scale = 1.0; BaseFloat transition_scale = 1.0; BaseFloat self_loop_scale = 1.0; align_config.Register(&po); po.Register("binary", &binary, "Write output in binary mode"); po.Register("transition-scale", &transition_scale, "Transition-probability scale [relative to acoustics]"); po.Register("acoustic-scale", &acoustic_scale, "Scaling factor for acoustic likelihoods"); po.Register("self-loop-scale", &self_loop_scale, "Scale of self-loop versus non-self-loop log probs [relative to acoustics]"); po.Read(argc, argv); if (po.NumArgs() < 4 || po.NumArgs() > 5) { po.PrintUsage(); exit(1); } std::string model_in_filename = po.GetArg(1); std::string fst_rspecifier = po.GetArg(2); std::string feature_rspecifier = po.GetArg(3); std::string alignment_wspecifier = po.GetArg(4); std::string scores_wspecifier = po.GetOptArg(5); TransitionModel trans_model; ReadKaldiObject(model_in_filename, &trans_model); SequentialBaseFloatMatrixReader loglikes_reader(feature_rspecifier); RandomAccessTableReader fst_reader(fst_rspecifier); Int32VectorWriter alignment_writer(alignment_wspecifier); BaseFloatWriter scores_writer(scores_wspecifier); int num_done = 0, num_err = 0, num_retry = 0; double tot_like = 0.0; kaldi::int64 frame_count = 0; for (; !loglikes_reader.Done(); loglikes_reader.Next()) { std::string utt = loglikes_reader.Key(); if (!fst_reader.HasKey(utt)) { KALDI_WARN << "No fst for utterance " << utt; num_err++; continue; } const Matrix &loglikes = loglikes_reader.Value(); VectorFst decode_fst(fst_reader.Value(utt)); // fst_reader.FreeCurrent(); // this stops copy-on-write of the fst // by deleting the fst inside the reader, since we're about to mutate // the fst by adding transition probs. if (loglikes.NumRows() == 0) { KALDI_WARN << "Empty loglikes matrix utterance: " << utt; num_err++; continue; } if (decode_fst.Start() == fst::kNoStateId) { KALDI_WARN << "Empty decoding graph for " << utt; num_err++; continue; } { // Add transition-probs to the FST. std::vector disambig_syms; // empty. AddTransitionProbs(trans_model, disambig_syms, transition_scale, self_loop_scale, &decode_fst); } DecodableMatrixScaledMapped decodable(trans_model, loglikes, acoustic_scale); AlignUtteranceWrapper(align_config, utt, acoustic_scale, &decode_fst, &decodable, &alignment_writer, &scores_writer, &num_done, &num_err, &num_retry, &tot_like, &frame_count); } KALDI_LOG << "Overall log-likelihood per frame is " << (tot_like/frame_count) << " over " << frame_count<< " frames."; KALDI_LOG << "Retried " << num_retry << " out of " << (num_done + num_err) << " utterances."; KALDI_LOG << "Done " << num_done << ", errors on " << num_err; return (num_done != 0 ? 0 : 1); } catch(const std::exception &e) { std::cerr << e.what(); return -1; } }