// bin/align-mapped.cc // Copyright 2009-2012 Microsoft Corporation, Karel Vesely // 2013-2014 Johns Hopkins University (author: Daniel Povey) // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #include "base/kaldi-common.h" #include "util/common-utils.h" #include "hmm/transition-model.h" #include "fstext/fstext-lib.h" #include "decoder/decoder-wrappers.h" #include "decoder/training-graph-compiler.h" #include "decoder/decodable-matrix.h" #include "lat/kaldi-lattice.h" // for {Compact}LatticeArc int main(int argc, char *argv[]) { try { using namespace kaldi; typedef kaldi::int32 int32; using fst::SymbolTable; using fst::VectorFst; using fst::StdArc; const char *usage = "Generate alignments, reading log-likelihoods as matrices.\n" " (model is needed only for the integer mappings in its transition-model)\n" "Usage: align-mapped [options] " " \n" "e.g.: \n" " align-mapped tree trans.mdl lex.fst scp:train.scp ark:train.tra ark:nnet.ali\n"; ParseOptions po(usage); AlignConfig align_config; BaseFloat acoustic_scale = 1.0; std::string disambig_rxfilename; TrainingGraphCompilerOptions gopts; align_config.Register(&po); gopts.Register(&po); po.Register("acoustic-scale", &acoustic_scale, "Scaling factor for acoustic likelihoods"); po.Register("read-disambig-syms", &disambig_rxfilename, "File containing " "list of disambiguation symbols in phone symbol table"); po.Read(argc, argv); if (po.NumArgs() != 6) { po.PrintUsage(); exit(1); } std::string tree_in_filename = po.GetArg(1), model_in_filename = po.GetArg(2), lex_in_filename = po.GetArg(3), feature_rspecifier = po.GetArg(4), transcript_rspecifier = po.GetArg(5), alignment_wspecifier = po.GetArg(6); ContextDependency ctx_dep; ReadKaldiObject(tree_in_filename, &ctx_dep); TransitionModel trans_model; ReadKaldiObject(model_in_filename, &trans_model); VectorFst *lex_fst = fst::ReadFstKaldi(lex_in_filename); // ownership will be taken by gc. std::vector disambig_syms; if (disambig_rxfilename != "") if (!ReadIntegerVectorSimple(disambig_rxfilename, &disambig_syms)) KALDI_ERR << "fstcomposecontext: Could not read disambiguation symbols from " << disambig_rxfilename; TrainingGraphCompiler gc(trans_model, ctx_dep, lex_fst, disambig_syms, gopts); lex_fst = NULL; // we gave ownership to gc. SequentialBaseFloatMatrixReader loglikes_reader(feature_rspecifier); RandomAccessInt32VectorReader transcript_reader(transcript_rspecifier); Int32VectorWriter alignment_writer(alignment_wspecifier); int num_done = 0, num_err = 0, num_retry = 0; double tot_like = 0.0; kaldi::int64 frame_count = 0; for (; !loglikes_reader.Done(); loglikes_reader.Next()) { std::string utt = loglikes_reader.Key(); if (!transcript_reader.HasKey(utt)) { KALDI_WARN << "No transcript for utterance " << utt; num_err++; continue; } const Matrix &loglikes = loglikes_reader.Value(); const std::vector &transcript = transcript_reader.Value(utt); VectorFst decode_fst; if (!gc.CompileGraphFromText(transcript, &decode_fst)) { KALDI_WARN << "Problem creating decoding graph for utterance " << utt <<" [serious error]"; num_err++; continue; } if (loglikes.NumRows() == 0) { KALDI_WARN << "Empty loglikes matrix for utterance: " << utt; num_err++; continue; } DecodableMatrixScaledMapped decodable(trans_model, loglikes, acoustic_scale); AlignUtteranceWrapper(align_config, utt, acoustic_scale, &decode_fst, &decodable, &alignment_writer, NULL, &num_done, &num_err, &num_retry, &tot_like, &frame_count); } KALDI_LOG << "Overall log-likelihood per frame is " << (tot_like/frame_count) << " over " << frame_count<< " frames."; KALDI_LOG << "Retried " << num_retry << " out of " << (num_done + num_err) << " utterances."; KALDI_LOG << "Done " << num_done << ", errors on " << num_err; return (num_done != 0 ? 0 : 1); } catch(const std::exception &e) { std::cerr << e.what(); return -1; } }