// nnet3bin/nnet3-chain-train.cc // Copyright 2015 Johns Hopkins University (author: Daniel Povey) // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #include "base/kaldi-common.h" #include "util/common-utils.h" #include "nnet3/nnet-chain-training.h" #include "cudamatrix/cu-allocator.h" int main(int argc, char *argv[]) { try { using namespace kaldi; using namespace kaldi::nnet3; using namespace kaldi::chain; typedef kaldi::int32 int32; typedef kaldi::int64 int64; const char *usage = "Train nnet3+chain neural network parameters with backprop and stochastic\n" "gradient descent. Minibatches are to be created by nnet3-chain-merge-egs in\n" "the input pipeline. This training program is single-threaded (best to\n" "use it with a GPU).\n" "\n" "Usage: nnet3-chain-train [options] \n" "\n" "nnet3-chain-train 1.raw den.fst 'ark:nnet3-merge-egs 1.cegs ark:-|' 2.raw\n"; int32 srand_seed = 0; bool binary_write = true; std::string use_gpu = "yes"; NnetChainTrainingOptions opts; ParseOptions po(usage); po.Register("srand", &srand_seed, "Seed for random number generator "); po.Register("binary", &binary_write, "Write output in binary mode"); po.Register("use-gpu", &use_gpu, "yes|no|optional|wait, only has effect if compiled with CUDA"); opts.Register(&po); RegisterCuAllocatorOptions(&po); po.Read(argc, argv); srand(srand_seed); if (po.NumArgs() != 4) { po.PrintUsage(); exit(1); } #if HAVE_CUDA==1 CuDevice::Instantiate().SelectGpuId(use_gpu); #endif std::string nnet_rxfilename = po.GetArg(1), den_fst_rxfilename = po.GetArg(2), examples_rspecifier = po.GetArg(3), nnet_wxfilename = po.GetArg(4); Nnet nnet; ReadKaldiObject(nnet_rxfilename, &nnet); bool ok; { fst::StdVectorFst den_fst; ReadFstKaldi(den_fst_rxfilename, &den_fst); NnetChainTrainer trainer(opts, den_fst, &nnet); SequentialNnetChainExampleReader example_reader(examples_rspecifier); for (; !example_reader.Done(); example_reader.Next()) trainer.Train(example_reader.Value()); ok = trainer.PrintTotalStats(); } #if HAVE_CUDA==1 CuDevice::Instantiate().PrintProfile(); #endif WriteKaldiObject(nnet, nnet_wxfilename, binary_write); KALDI_LOG << "Wrote raw model to " << nnet_wxfilename; return (ok ? 0 : 1); } catch(const std::exception &e) { std::cerr << e.what() << '\n'; return -1; } }