// cudafeatbin/compute-online-feats-cuda.cc // // Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved. // Justin Luitjens // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #if HAVE_CUDA == 1 #include #endif #include "base/kaldi-common.h" #include "util/common-utils.h" #include "cudafeat/online-cuda-feature-pipeline.h" #include "feat/wave-reader.h" #include "cudamatrix/cu-matrix.h" #include "cudamatrix/cu-vector.h" int main(int argc, char *argv[]) { using namespace kaldi; typedef kaldi::int32 int32; typedef kaldi::int64 int64; try { const char *usage = "Extract features and ivectors for utterances using the cuda online\n" "feature pipeline. This class models the online feature pipeline.\n" "\n" "Usage: compute-online-feats-cuda [options] " " \n" "e.g.: \n" " ./compute-online-feats-cuda --config=feature_config wav.scp " "ark,scp:ivector.ark,ivector.scp ark,scp:feat.ark,feat.scp\n"; ParseOptions po(usage); // Use online feature config as that is the flow we are trying to model OnlineNnet2FeaturePipelineConfig feature_opts; feature_opts.Register(&po); po.Read(argc, argv); if (po.NumArgs() != 3) { po.PrintUsage(); exit(1); } g_cuda_allocator.SetOptions(g_allocator_options); CuDevice::Instantiate().SelectGpuId("yes"); CuDevice::Instantiate().AllowMultithreading(); std::string wav_rspecifier = po.GetArg(1), ivector_wspecifier = po.GetArg(2), feature_wspecifier = po.GetArg(3); OnlineCudaFeaturePipeline feature_pipeline(feature_opts); SequentialTableReader reader(wav_rspecifier); BaseFloatVectorWriter ivector_writer; BaseFloatMatrixWriter feature_writer; if (!ivector_writer.Open(ivector_wspecifier)) { KALDI_ERR << "Could not initialize ivector_writer with wspecifier " << ivector_wspecifier; } if (!feature_writer.Open(feature_wspecifier)) { KALDI_ERR << "Could not initialize feature_writer with wspecifier " << feature_wspecifier; } int32 num_utts = 0, num_success = 0; for (; !reader.Done(); reader.Next()) { num_utts++; std::string utt = reader.Key(); KALDI_LOG << "Processing Utterance " << utt; try { const WaveData &wave_data = reader.Value(); SubVector waveform(wave_data.Data(), 0); CuVector cu_wave(waveform); CuMatrix cu_features; CuVector cu_ivector; nvtxRangePushA("Feature Extract"); feature_pipeline.ComputeFeatures(cu_wave, wave_data.SampFreq(), &cu_features, &cu_ivector); cudaDeviceSynchronize(); nvtxRangePop(); Matrix features(cu_features.NumRows(), cu_features.NumCols()); Vector ivector(cu_ivector.Dim()); features.CopyFromMat(cu_features); ivector.CopyFromVec(cu_ivector); feature_writer.Write(utt, features); ivector_writer.Write(utt, ivector); num_success++; } catch (...) { KALDI_WARN << "Failed to compute features for utterance " << utt; continue; } } KALDI_LOG << "Processed " << num_utts << " utterances with " << num_utts - num_success << " failures."; return (num_success != 0 ? 0 : 1); } catch(const std::exception &e) { std::cerr << e.what(); return -1; } }