// fgmmbin/fgmm-global-acc-stats-post.cc // Copyright 2015 David Snyder // 2015 Johns Hopkins University (Author: Daniel Povey) // 2015 Johns Hopkins University (Author: Daniel Garcia-Romero) // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #include "base/kaldi-common.h" #include "util/common-utils.h" #include "gmm/model-common.h" #include "gmm/full-gmm.h" #include "gmm/diag-gmm.h" #include "gmm/mle-full-gmm.h" #include "hmm/posterior.h" int main(int argc, char *argv[]) { try { using namespace kaldi; typedef kaldi::int32 int32; const char *usage = "Accumulate stats from posteriors and features for instantiating " "a full-covariance GMM. See also fgmm-global-acc-stats.\n" "Usage: fgmm-global-acc-stats-post [options] " " \n" "e.g.: fgmm-global-acc-stats-post scp:post.scp 2048 " "scp:train.scp 1.acc\n"; ParseOptions po(usage); bool binary = true; std::string update_flags_str = "mvw"; std::string weights_rspecifier; po.Register("binary", &binary, "Write output in binary mode"); po.Register("update-flags", &update_flags_str, "Which GMM parameters will be " "updated: subset of mvw."); po.Register("weights", &weights_rspecifier, "rspecifier for a vector of floats " "for each utterance, that's a per-frame weight."); po.Read(argc, argv); if (po.NumArgs() != 4) { po.PrintUsage(); exit(1); } std::string post_rspecifier = po.GetArg(1), feature_rspecifier = po.GetArg(3), accs_wxfilename = po.GetArg(4); int32 num_components = atoi(po.GetArg(2).c_str()); AccumFullGmm fgmm_accs; double tot_like = 0.0, tot_weight = 0.0; SequentialPosteriorReader post_reader(post_rspecifier); RandomAccessBaseFloatMatrixReader feature_reader(feature_rspecifier); RandomAccessBaseFloatVectorReader weights_reader(weights_rspecifier); int32 num_done = 0, num_err = 0; for (; !post_reader.Done(); post_reader.Next()) { std::string key = post_reader.Key(); Posterior post = post_reader.Value(); if (!feature_reader.HasKey(key)) { KALDI_WARN << "No features available for utterance " << key; num_err++; continue; } const Matrix &mat = feature_reader.Value(key); int32 file_frames = mat.NumRows(); // Initialize the FGMM accs before processing the first utt. if (num_done == 0) { fgmm_accs.Resize(num_components, mat.NumCols(), StringToGmmFlags(update_flags_str)); } BaseFloat file_like = 0.0, file_weight = 0.0; // total of weights of frames (will each be // 1 unless --weights option supplied. Vector weights; if (weights_rspecifier != "") { // We have per-frame weighting. if (!weights_reader.HasKey(key)) { KALDI_WARN << "No per-frame weights available for utterance " << key; num_err++; continue; } weights = weights_reader.Value(key); if (weights.Dim() != file_frames) { KALDI_WARN << "Weights for utterance " << key << " have wrong dim " << weights.Dim() << " vs. " << file_frames; num_err++; continue; } } if (post.size() != static_cast(file_frames)) { KALDI_WARN << "posterior information for utterance " << key << " has wrong size " << post.size() << " vs. " << file_frames; num_err++; continue; } for (int32 i = 0; i < file_frames; i++) { BaseFloat weight = (weights.Dim() != 0) ? weights(i) : 1.0; if (weight == 0.0) continue; file_weight += weight; SubVector data(mat, i); ScalePosterior(weight, &post); file_like += TotalPosterior(post); for (int32 j = 0; j < post[i].size(); j++) fgmm_accs.AccumulateForComponent(data, post[i][j].first, post[i][j].second); } KALDI_VLOG(2) << "File '" << key << "': Average likelihood = " << (file_like/file_weight) << " over " << file_weight <<" frames."; tot_like += file_like; tot_weight += file_weight; num_done++; } KALDI_LOG << "Done " << num_done << " files; " << num_err << " with errors."; KALDI_LOG << "Overall likelihood per " << "frame = " << (tot_like/tot_weight) << " over " << tot_weight << " (weighted) frames."; WriteKaldiObject(fgmm_accs, accs_wxfilename, binary); KALDI_LOG << "Written accs to " << accs_wxfilename; return (num_done != 0 ? 0 : 1); } catch(const std::exception &e) { std::cerr << e.what(); return -1; } }