// gmm/full-gmm-normal.cc // Copyright 2009-2011 Microsoft Corporation; Saarland University; // Yanmin Qian // Univ. Erlangen-Nuremberg, Korbinian Riedhammer // 2013 Johns Hopkins University (author: Daniel Povey) // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #include #include #include #include #include "gmm/full-gmm-normal.h" #include "gmm/full-gmm.h" namespace kaldi { void FullGmmNormal::Resize(int32 nmix, int32 dim) { KALDI_ASSERT(nmix > 0 && dim > 0); if (weights_.Dim() != nmix) weights_.Resize(nmix); if (means_.NumRows() != nmix || means_.NumCols() != dim) means_.Resize(nmix, dim); if (vars_.size() != nmix) vars_.resize(nmix); for (int32 i = 0; i < nmix; i++) { if (vars_[i].NumRows() != nmix || vars_[i].NumCols() != dim) { vars_[i].Resize(dim); } } } void FullGmmNormal::CopyFromFullGmm(const FullGmm &fullgmm) { /// resize the variables to fit the gmm size_t dim = fullgmm.Dim(); size_t num_gauss = fullgmm.NumGauss(); Resize(num_gauss, dim); /// copy weights weights_.CopyFromVec(fullgmm.weights_); /// we need to split the natural components for each gaussian Vector mean_times_invcovar(dim); for (size_t i = 0; i < num_gauss; i++) { // copy and invert (inverse) covariance matrix vars_[i].CopyFromSp(fullgmm.inv_covars_[i]); vars_[i].InvertDouble(); // multiply the (mean x icov) by (cov) to get the means back mean_times_invcovar.CopyFromVec(fullgmm.means_invcovars_.Row(i)); (means_.Row(i)).AddSpVec(1.0, vars_[i], mean_times_invcovar, 0.0); } } void FullGmmNormal::CopyToFullGmm(FullGmm *fullgmm, GmmFlagsType flags) { KALDI_ASSERT(weights_.Dim() == fullgmm->weights_.Dim() && means_.NumCols() == fullgmm->Dim()); FullGmmNormal oldg(*fullgmm); if (flags & kGmmWeights) fullgmm->weights_.CopyFromVec(weights_); size_t num_comp = fullgmm->NumGauss(), dim = fullgmm->Dim(); for (size_t i = 0; i < num_comp; i++) { if (flags & kGmmVariances) { fullgmm->inv_covars_[i].CopyFromSp(vars_[i]); fullgmm->inv_covars_[i].InvertDouble(); // update the mean-related natural part with old mean, if necessary if (!(flags & kGmmMeans)) { Vector mean_times_inv(dim); Vector mhelp(oldg.means_.Row(i)); mean_times_inv.AddSpVec(1.0, fullgmm->inv_covars_[i], mhelp, 0.0f); fullgmm->means_invcovars_.Row(i).CopyFromVec(mean_times_inv); } } if (flags & kGmmMeans) { Vector mean_times_inv(dim), mean(means_.Row(i)); mean_times_inv.AddSpVec(1.0, fullgmm->inv_covars_[i], mean, 0.0f); fullgmm->means_invcovars_.Row(i).CopyFromVec(mean_times_inv); } } fullgmm->valid_gconsts_ = false; } void FullGmmNormal::Rand(MatrixBase *feats) { int32 dim = means_.NumCols(), num_frames = feats->NumRows(), num_gauss = means_.NumRows(); KALDI_ASSERT(feats->NumCols() == dim); std::vector > sqrt_var(num_gauss); for (int32 i = 0; i < num_gauss; i++) { sqrt_var[i].Resize(dim); sqrt_var[i].Cholesky(SpMatrix(vars_[i])); } Vector rand(dim); for (int32 t = 0; t < num_frames; t++) { int32 i = weights_.RandCategorical(); // index with prob propto weights_[i]. SubVector frame(*feats, t); frame.CopyFromVec(means_.Row(i)); rand.SetRandn(); frame.AddTpVec(1.0, sqrt_var[i], kNoTrans, rand, 1.0); } } } // End namespace kaldi