// gmm/full-gmm-normal.h // Copyright 2009-2011 Microsoft Corporation; Saarland University; // Yanmin Qian // Univ. Erlangen-Nuremberg, Korbinian Riedhammer // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #ifndef KALDI_GMM_FULL_GMM_NORMAL_H_ #define KALDI_GMM_FULL_GMM_NORMAL_H_ 1 #include #include "base/kaldi-common.h" #include "gmm/model-common.h" #include "gmm/full-gmm.h" #include "matrix/matrix-lib.h" namespace kaldi { class FullGmm; /** \class FullGmmNormal * Definition for Gaussian Mixture Model with full covariances in normal * mode: where the parameters are stored as means and variances (instead of * the exponential form that the FullGmm class is stored as). This class will * be used in the update (since the update formulas are for the standard * parameterization) and then copied to the exponential form of the FullGmm * class. The FullGmmNormal class will not be used anywhere else, and should * not have any extra methods that are not needed. */ class FullGmmNormal { public: /// Empty constructor. FullGmmNormal() { } explicit FullGmmNormal(const FullGmm &gmm) { CopyFromFullGmm(gmm); } /// Resizes arrays to this dim. Does not initialize data. void Resize(int32 nMix, int32 dim); /// Copies from given FullGmm void CopyFromFullGmm(const FullGmm &fullgmm); /// Copies to FullGmm void CopyToFullGmm(FullGmm *fullgmm, GmmFlagsType flags = kGmmAll); /// Generates random features from the model. void Rand(MatrixBase *feats); Vector weights_; ///< weights (not log). Matrix means_; ///< Means std::vector > vars_; ///< covariances KALDI_DISALLOW_COPY_AND_ASSIGN(FullGmmNormal); }; } // End namespace kaldi #endif // KALDI_GMM_FULL_GMM_NORMAL_H_