// gmmbin/gmm-acc-mllt-global.cc // Copyright 2009-2011 Microsoft Corporation // 2014 Guoguo Chen // 2014 Daniel Povey // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #include "base/kaldi-common.h" #include "util/common-utils.h" #include "gmm/am-diag-gmm.h" #include "hmm/transition-model.h" #include "transform/mllt.h" #include "hmm/posterior.h" int main(int argc, char *argv[]) { using namespace kaldi; try { const char *usage = "Accumulate MLLT (global STC) statistics: this version is for where there is\n" "one global GMM (e.g. a UBM)\n" "Usage: gmm-acc-mllt-global [options] \n" "e.g.: \n" " gmm-acc-mllt-global 1.dubm scp:feats.scp 1.macc\n"; ParseOptions po(usage); bool binary = true; BaseFloat rand_prune = 0.25; std::string gselect_rspecifier; po.Register("binary", &binary, "Write output in binary mode"); po.Register("rand-prune", &rand_prune, "Randomized pruning parameter to speed up " "accumulation (larger -> more pruning. May exceed one)."); po.Register("gselect", &gselect_rspecifier, "Rspecifier for Gaussian selection " "information"); po.Read(argc, argv); if (po.NumArgs() != 3) { po.PrintUsage(); exit(1); } std::string gmm_filename = po.GetArg(1), feature_rspecifier = po.GetArg(2), accs_wxfilename = po.GetArg(3); using namespace kaldi; typedef kaldi::int32 int32; DiagGmm gmm; ReadKaldiObject(gmm_filename, &gmm); MlltAccs mllt_accs(gmm.Dim(), rand_prune); double tot_like = 0.0; double tot_t = 0.0; SequentialBaseFloatMatrixReader feature_reader(feature_rspecifier); RandomAccessInt32VectorVectorReader gselect_reader(gselect_rspecifier); int32 num_done = 0, num_err = 0; for (; !feature_reader.Done(); feature_reader.Next()) { std::string utt = feature_reader.Key(); const Matrix &mat = feature_reader.Value(); num_done++; BaseFloat tot_like_this_file = 0.0, tot_weight = 0.0; if (gselect_rspecifier == "") { for (int32 i = 0; i < mat.NumRows(); i++) { tot_like_this_file += mllt_accs.AccumulateFromGmm(gmm, mat.Row(i), 1.0); tot_weight += 1.0; } } else { if (!gselect_reader.HasKey(utt)) { KALDI_WARN << "No gselect information for utterance " << utt; num_err++; continue; } const std::vector > &gselect= gselect_reader.Value(utt); if (static_cast(gselect.size()) != mat.NumRows()) { KALDI_WARN << "Gselect information has wrong size for utterance " << utt << ", " << gselect.size() << " vs. " << mat.NumRows(); num_err++; continue; } for (int32 i = 0; i < mat.NumRows(); i++) { tot_like_this_file += mllt_accs.AccumulateFromGmmPreselect( gmm, gselect[i], mat.Row(i), 1.0); tot_weight += 1.0; } } KALDI_LOG << "Average like for this file is " << (tot_like_this_file/tot_weight) << " over " << tot_weight << " frames."; tot_like += tot_like_this_file; tot_t += tot_weight; if (num_done % 10 == 0) KALDI_LOG << "Avg like per frame so far is " << (tot_like/tot_t); } KALDI_LOG << "Done " << num_done << " files. "; KALDI_LOG << "Overall avg like per frame (Gaussian only) = " << (tot_like/tot_t) << " over " << tot_t << " frames."; WriteKaldiObject(mllt_accs, accs_wxfilename, binary); KALDI_LOG << "Written accs."; return (num_done != 0 ? 0 : 1); } catch(const std::exception &e) { std::cerr << e.what(); return -1; } }