// gmmbin/gmm-acc-mllt.cc // Copyright 2009-2011 Microsoft Corporation // 2014 Guoguo Chen // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #include "base/kaldi-common.h" #include "util/common-utils.h" #include "gmm/am-diag-gmm.h" #include "hmm/transition-model.h" #include "transform/mllt.h" #include "hmm/posterior.h" int main(int argc, char *argv[]) { using namespace kaldi; try { const char *usage = "Accumulate MLLT (global STC) statistics\n" "Usage: gmm-acc-mllt [options] \n" "e.g.: \n" " gmm-acc-mllt 1.mdl scp:train.scp ark:1.post 1.macc\n"; ParseOptions po(usage); bool binary = true; BaseFloat rand_prune = 0.25; po.Register("binary", &binary, "Write output in binary mode"); po.Register("rand-prune", &rand_prune, "Randomized pruning parameter to speed up " "accumulation (larger -> more pruning. May exceed one)."); po.Read(argc, argv); if (po.NumArgs() != 4) { po.PrintUsage(); exit(1); } std::string model_filename = po.GetArg(1), feature_rspecifier = po.GetArg(2), posteriors_rspecifier = po.GetArg(3), accs_wxfilename = po.GetArg(4); using namespace kaldi; typedef kaldi::int32 int32; AmDiagGmm am_gmm; TransitionModel trans_model; { bool binary; Input ki(model_filename, &binary); trans_model.Read(ki.Stream(), binary); am_gmm.Read(ki.Stream(), binary); } MlltAccs mllt_accs(am_gmm.Dim(), rand_prune); double tot_like = 0.0; double tot_t = 0.0; SequentialBaseFloatMatrixReader feature_reader(feature_rspecifier); RandomAccessPosteriorReader posteriors_reader(posteriors_rspecifier); int32 num_done = 0, num_no_posterior = 0, num_other_error = 0; for (; !feature_reader.Done(); feature_reader.Next()) { std::string key = feature_reader.Key(); if (!posteriors_reader.HasKey(key)) { num_no_posterior++; } else { const Matrix &mat = feature_reader.Value(); const Posterior &posterior = posteriors_reader.Value(key); if (static_cast(posterior.size()) != mat.NumRows()) { KALDI_WARN << "Posterior vector has wrong size "<< (posterior.size()) << " vs. "<< (mat.NumRows()); num_other_error++; continue; } num_done++; BaseFloat tot_like_this_file = 0.0, tot_weight = 0.0; Posterior pdf_posterior; ConvertPosteriorToPdfs(trans_model, posterior, &pdf_posterior); for (size_t i = 0; i < posterior.size(); i++) { for (size_t j = 0; j < pdf_posterior[i].size(); j++) { int32 pdf_id = pdf_posterior[i][j].first; BaseFloat weight = pdf_posterior[i][j].second; tot_like_this_file += mllt_accs.AccumulateFromGmm(am_gmm.GetPdf(pdf_id), mat.Row(i), weight) * weight; tot_weight += weight; } } KALDI_LOG << "Average like for this file is " << (tot_like_this_file/tot_weight) << " over " << tot_weight << " frames."; tot_like += tot_like_this_file; tot_t += tot_weight; if (num_done % 10 == 0) KALDI_LOG << "Avg like per frame so far is " << (tot_like/tot_t); } } KALDI_LOG << "Done " << num_done << " files, " << num_no_posterior << " with no posteriors, " << num_other_error << " with other errors."; KALDI_LOG << "Overall avg like per frame (Gaussian only) = " << (tot_like/tot_t) << " over " << tot_t << " frames."; WriteKaldiObject(mllt_accs, accs_wxfilename, binary); KALDI_LOG << "Written accs."; return (num_done != 0 ? 0 : 1); } catch(const std::exception &e) { std::cerr << e.what(); return -1; } }