// gmmbin/gmm-basis-fmllr-accs.cc // Copyright 2012 Carnegie Mellon University (author: Yajie Miao) // 2014 Guoguo Chen // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #include using std::string; #include using std::vector; #include "base/kaldi-common.h" #include "util/common-utils.h" #include "gmm/am-diag-gmm.h" #include "hmm/transition-model.h" #include "transform/fmllr-diag-gmm.h" #include "transform/basis-fmllr-diag-gmm.h" #include "hmm/posterior.h" namespace kaldi { void AccumulateForUtterance(const Matrix &feats, const Posterior &post, const TransitionModel &trans_model, const AmDiagGmm &am_gmm, FmllrDiagGmmAccs *spk_stats) { Posterior pdf_post; ConvertPosteriorToPdfs(trans_model, post, &pdf_post); for (size_t i = 0; i < post.size(); i++) { for (size_t j = 0; j < pdf_post[i].size(); j++) { int32 pdf_id = pdf_post[i][j].first; spk_stats->AccumulateForGmm(am_gmm.GetPdf(pdf_id), feats.Row(i), pdf_post[i][j].second); } } } } int main(int argc, char *argv[]) { try { typedef kaldi::int32 int32; using namespace kaldi; const char *usage = "Accumulate gradient scatter from training set, either per utterance or \n" "for the supplied set of speakers (spk2utt option). Reads posterior to accumulate \n" "fMLLR stats for each speaker/utterance. Writes gradient scatter matrix.\n" "Usage: gmm-basis-fmllr-accs [options] " " \n"; bool binary_write = true; string spk2utt_rspecifier; ParseOptions po(usage); po.Register("binary", &binary_write, "Write output in binary mode"); po.Register("spk2utt", &spk2utt_rspecifier, "rspecifier for speaker to " "utterance-list map"); po.Read(argc, argv); if (po.NumArgs() != 4) { po.PrintUsage(); exit(1); } string model_rxfilename = po.GetArg(1), feature_rspecifier = po.GetArg(2), post_rspecifier = po.GetArg(3), accs_wspecifier = po.GetArg(4); TransitionModel trans_model; AmDiagGmm am_gmm; { bool binary; Input ki(model_rxfilename, &binary); trans_model.Read(ki.Stream(), binary); am_gmm.Read(ki.Stream(), binary); } RandomAccessPosteriorReader post_reader(post_rspecifier); BasisFmllrAccus basis_accs(am_gmm.Dim()); int32 num_done = 0, num_no_post = 0, num_other_error = 0; if (spk2utt_rspecifier != "") { // per-speaker mode SequentialTokenVectorReader spk2utt_reader(spk2utt_rspecifier); RandomAccessBaseFloatMatrixReader feature_reader(feature_rspecifier); int32 num_spk = 0; for (; !spk2utt_reader.Done(); spk2utt_reader.Next()) { FmllrDiagGmmAccs spk_stats(am_gmm.Dim()); string spk = spk2utt_reader.Key(); const vector &uttlist = spk2utt_reader.Value(); for (size_t i = 0; i < uttlist.size(); i++) { std::string utt = uttlist[i]; if (!feature_reader.HasKey(utt)) { KALDI_WARN << "Did not find features for utterance " << utt; num_other_error++; continue; } if (!post_reader.HasKey(utt)) { KALDI_WARN << "Did not find posteriors for utterance " << utt; num_no_post++; continue; } const Matrix &feats = feature_reader.Value(utt); const Posterior &post = post_reader.Value(utt); if (static_cast(post.size()) != feats.NumRows()) { KALDI_WARN << "Posterior vector has wrong size " << (post.size()) << " vs. " << (feats.NumRows()); num_other_error++; continue; } AccumulateForUtterance(feats, post, trans_model, am_gmm, &spk_stats); num_done++; } // end looping over all utterances of this speaker basis_accs.AccuGradientScatter(spk_stats); num_spk++; } // end looping over speakers KALDI_LOG << "Accumulate statistics from " << num_spk << " speakers"; } else { // per-utterance mode SequentialBaseFloatMatrixReader feature_reader(feature_rspecifier); for (; !feature_reader.Done(); feature_reader.Next()) { string utt = feature_reader.Key(); if (!post_reader.HasKey(utt)) { KALDI_WARN << "Did not find posts for utterance " << utt; num_no_post++; continue; } const Matrix &feats = feature_reader.Value(); const Posterior &post = post_reader.Value(utt); if (static_cast(post.size()) != feats.NumRows()) { KALDI_WARN << "Posterior has wrong size " << (post.size()) << " vs. " << (feats.NumRows()); num_other_error++; continue; } // Accumulate stats for this utterance FmllrDiagGmmAccs utt_stats(am_gmm.Dim()); AccumulateForUtterance(feats, post, trans_model, am_gmm, &utt_stats); num_done++; basis_accs.AccuGradientScatter(utt_stats); } // end looping over utterances } // Write out accumulations { Output ko(accs_wspecifier, binary_write); basis_accs.Write(ko.Stream(), binary_write); } KALDI_LOG << "Done " << num_done << " files, " << num_no_post << " with no posts, " << num_other_error << " with other errors."; KALDI_LOG << "Written gradient scatter to " << accs_wspecifier; return (num_done != 0 ? 0 : 1); } catch(const std::exception& e) { std::cerr << e.what(); return -1; } }