// gmmbin/gmm-compute-likes.cc // Copyright 2009-2011 Microsoft Corporation // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #include "base/kaldi-common.h" #include "util/common-utils.h" #include "gmm/am-diag-gmm.h" #include "hmm/transition-model.h" #include "fstext/fstext-lib.h" #include "base/timer.h" int main(int argc, char *argv[]) { try { using namespace kaldi; typedef kaldi::int32 int32; using fst::SymbolTable; using fst::VectorFst; using fst::StdArc; const char *usage = "Compute log-likelihoods from GMM-based model\n" "(outputs matrices of log-likelihoods indexed by (frame, pdf)\n" "Usage: gmm-compute-likes [options] model-in features-rspecifier likes-wspecifier\n"; ParseOptions po(usage); po.Read(argc, argv); if (po.NumArgs() != 3) { po.PrintUsage(); exit(1); } std::string model_in_filename = po.GetArg(1), feature_rspecifier = po.GetArg(2), loglikes_wspecifier = po.GetArg(3); AmDiagGmm am_gmm; { bool binary; TransitionModel trans_model; // not needed. Input ki(model_in_filename, &binary); trans_model.Read(ki.Stream(), binary); am_gmm.Read(ki.Stream(), binary); } BaseFloatMatrixWriter loglikes_writer(loglikes_wspecifier); SequentialBaseFloatMatrixReader feature_reader(feature_rspecifier); int32 num_done = 0; for (; !feature_reader.Done(); feature_reader.Next()) { std::string key = feature_reader.Key(); const Matrix &features (feature_reader.Value()); Matrix loglikes(features.NumRows(), am_gmm.NumPdfs()); for (int32 i = 0; i < features.NumRows(); i++) { for (int32 j = 0; j < am_gmm.NumPdfs(); j++) { SubVector feat_row(features, i); loglikes(i, j) = am_gmm.LogLikelihood(j, feat_row); } } loglikes_writer.Write(key, loglikes); num_done++; } KALDI_LOG << "gmm-compute-likes: computed likelihoods for " << num_done << " utterances."; return 0; } catch(const std::exception &e) { std::cerr << e.what(); return -1; } }