// gmmbin/gmm-decode-biglm-faster.cc // Copyright 2009-2011 Gilles Boulianne Microsoft Corporation // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #include "base/kaldi-common.h" #include "util/common-utils.h" #include "gmm/am-diag-gmm.h" #include "hmm/transition-model.h" #include "fstext/fstext-lib.h" #include "decoder/biglm-faster-decoder.h" #include "gmm/decodable-am-diag-gmm.h" #include "base/timer.h" namespace kaldi { fst::Fst *ReadNetwork(std::string filename) { // read decoding network FST Input ki(filename); // use ki.Stream() instead of is. if (!ki.Stream().good()) KALDI_ERR << "Could not open decoding-graph FST " << filename; fst::FstHeader hdr; if (!hdr.Read(ki.Stream(), "")) { KALDI_ERR << "Reading FST: error reading FST header."; } if (hdr.ArcType() != fst::StdArc::Type()) { KALDI_ERR << "FST with arc type " << hdr.ArcType() << " not supported."; } fst::FstReadOptions ropts("", &hdr); fst::Fst *decode_fst = NULL; if (hdr.FstType() == "vector") { decode_fst = fst::VectorFst::Read(ki.Stream(), ropts); } else if (hdr.FstType() == "const") { decode_fst = fst::ConstFst::Read(ki.Stream(), ropts); } else { KALDI_ERR << "Reading FST: unsupported FST type: " << hdr.FstType(); } if (decode_fst == NULL) { // fst code will warn. KALDI_ERR << "Error reading FST (after reading header)."; return NULL; } else { return decode_fst; } } } int main(int argc, char *argv[]) { try { using namespace kaldi; typedef kaldi::int32 int32; using fst::SymbolTable; using fst::VectorFst; using fst::Fst; using fst::StdArc; using fst::ReadFstKaldi; const char *usage = "Decode features using GMM-based model.\n" "User supplies LM used to generate decoding graph, and desired LM;\n" "this decoder applies the difference during decoding\n" "Usage: gmm-decode-biglm-faster [options] model-in fst-in oldlm-fst-in newlm-fst-in features-rspecifier words-wspecifier [alignments-wspecifier [lattice-wspecifier]]\n"; ParseOptions po(usage); bool allow_partial = true; BaseFloat acoustic_scale = 0.1; std::string word_syms_filename; BiglmFasterDecoderOptions decoder_opts; decoder_opts.Register(&po, true); // true == include obscure settings. po.Register("acoustic-scale", &acoustic_scale, "Scaling factor for acoustic likelihoods"); po.Register("word-symbol-table", &word_syms_filename, "Symbol table for words [for debug output]"); po.Register("allow-partial", &allow_partial, "Produce output even when final state was not reached"); po.Read(argc, argv); if (po.NumArgs() < 6 || po.NumArgs() > 8) { po.PrintUsage(); exit(1); } std::string model_rxfilename = po.GetArg(1), fst_rxfilename = po.GetArg(2), old_lm_fst_rxfilename = po.GetArg(3), new_lm_fst_rxfilename = po.GetArg(4), feature_rspecifier = po.GetArg(5), words_wspecifier = po.GetArg(6), alignment_wspecifier = po.GetOptArg(7), lattice_wspecifier = po.GetOptArg(8); TransitionModel trans_model; AmDiagGmm am_gmm; { bool binary; Input ki(model_rxfilename, &binary); trans_model.Read(ki.Stream(), binary); am_gmm.Read(ki.Stream(), binary); } Int32VectorWriter words_writer(words_wspecifier); Int32VectorWriter alignment_writer(alignment_wspecifier); CompactLatticeWriter clat_writer(lattice_wspecifier); fst::SymbolTable *word_syms = NULL; if (word_syms_filename != "") { word_syms = fst::SymbolTable::ReadText(word_syms_filename); if (!word_syms) KALDI_ERR << "Could not read symbol table from file "< *decode_fst = ReadNetwork(fst_rxfilename); VectorFst *old_lm_fst = ReadFstKaldi(old_lm_fst_rxfilename); ApplyProbabilityScale(-1.0, old_lm_fst); // Negate old LM probs... VectorFst *new_lm_fst = ReadFstKaldi(new_lm_fst_rxfilename); BaseFloat tot_like = 0.0; kaldi::int64 frame_count = 0; int num_success = 0, num_fail = 0; Timer timer; for (; !feature_reader.Done(); feature_reader.Next()) { std::string key = feature_reader.Key(); Matrix features (feature_reader.Value()); feature_reader.FreeCurrent(); if (features.NumRows() == 0) { KALDI_WARN << "Zero-length utterance: " << key; num_fail++; continue; } fst::BackoffDeterministicOnDemandFst old_lm_dfst(*old_lm_fst); fst::BackoffDeterministicOnDemandFst new_lm_dfst(*new_lm_fst); fst::ComposeDeterministicOnDemandFst compose_dfst(&old_lm_dfst, &new_lm_dfst); fst::CacheDeterministicOnDemandFst cache_dfst(&compose_dfst); BiglmFasterDecoder decoder(*decode_fst, decoder_opts, &cache_dfst); DecodableAmDiagGmmScaled gmm_decodable(am_gmm, trans_model, features, acoustic_scale); decoder.Decode(&gmm_decodable); std::cerr << "Length of file is "< decoded; // linear FST. if ( (allow_partial || decoder.ReachedFinal()) && decoder.GetBestPath(&decoded) ) { if (!decoder.ReachedFinal()) KALDI_WARN << "Decoder did not reach end-state, " << "outputting partial traceback since --allow-partial=true"; num_success++; if (!decoder.ReachedFinal()) KALDI_WARN << "Decoder did not reach end-state, outputting partial traceback."; std::vector alignment; std::vector words; LatticeWeight weight; frame_count += features.NumRows(); GetLinearSymbolSequence(decoded, &alignment, &words, &weight); words_writer.Write(key, words); if (alignment_writer.IsOpen()) alignment_writer.Write(key, alignment); if (lattice_wspecifier != "") { if (acoustic_scale != 0.0) // We'll write the lattice without acoustic scaling fst::ScaleLattice(fst::AcousticLatticeScale(1.0 / acoustic_scale), &decoded); fst::VectorFst clat; ConvertLattice(decoded, &clat, true); clat_writer.Write(key, clat); } if (word_syms != NULL) { std::cerr << key << ' '; for (size_t i = 0; i < words.size(); i++) { std::string s = word_syms->Find(words[i]); if (s == "") KALDI_ERR << "Word-id " << words[i] <<" not in symbol table."; std::cerr << s << ' '; } std::cerr << '\n'; } BaseFloat like = -weight.Value1() -weight.Value2(); tot_like += like; KALDI_LOG << "Log-like per frame for utterance " << key << " is " << (like / features.NumRows()) << " over " << features.NumRows() << " frames."; KALDI_VLOG(2) << "Cost for utterance " << key << " is " << weight.Value1() << " + " << weight.Value2(); } else { num_fail++; KALDI_WARN << "Did not successfully decode utterance " << key << ", len = " << features.NumRows(); } } double elapsed = timer.Elapsed(); KALDI_LOG << "Time taken [excluding initialization] "<< elapsed << "s: real-time factor assuming 100 frames/sec is " << (elapsed*100.0/frame_count); KALDI_LOG << "Done " << num_success << " utterances, failed for " << num_fail; KALDI_LOG << "Overall log-likelihood per frame is " << (tot_like/frame_count) << " over " << frame_count<<" frames."; delete word_syms; delete decode_fst; delete old_lm_fst; delete new_lm_fst; return (num_success != 0 ? 0 : 1); } catch(const std::exception &e) { std::cerr << e.what(); return -1; } }