// gmmbin/gmm-decode-faster-regtree-fmllr.cc // Copyright 2009-2012 Microsoft Corporation; Saarland University; // Johns Hopkins University (author: Daniel Povey) // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #include #include #include "base/kaldi-common.h" #include "util/common-utils.h" #include "gmm/am-diag-gmm.h" #include "hmm/transition-model.h" #include "transform/regression-tree.h" #include "transform/regtree-fmllr-diag-gmm.h" #include "transform/fmllr-diag-gmm.h" #include "fstext/fstext-lib.h" #include "decoder/faster-decoder.h" #include "transform/decodable-am-diag-gmm-regtree.h" #include "base/timer.h" #include "lat/kaldi-lattice.h" // for {Compact}LatticeArc using fst::SymbolTable; using fst::VectorFst; using fst::StdArc; using kaldi::BaseFloat; using std::string; using std::vector; using kaldi::LatticeWeight; using kaldi::LatticeArc; struct DecodeInfo { public: DecodeInfo(const kaldi::AmDiagGmm &am, const kaldi::TransitionModel &tm, kaldi::FasterDecoder *decoder, BaseFloat scale, bool allow_partial, const kaldi::Int32VectorWriter &wwriter, const kaldi::Int32VectorWriter &awriter, fst::SymbolTable *wsyms) : acoustic_model(am), trans_model(tm), decoder(decoder), acoustic_scale(scale), allow_partial(allow_partial), words_writer(wwriter), alignment_writer(awriter), word_syms(wsyms) {} const kaldi::AmDiagGmm &acoustic_model; const kaldi::TransitionModel &trans_model; kaldi::FasterDecoder *decoder; BaseFloat acoustic_scale; bool allow_partial; const kaldi::Int32VectorWriter &words_writer; const kaldi::Int32VectorWriter &alignment_writer; fst::SymbolTable *word_syms; private: KALDI_DISALLOW_COPY_AND_ASSIGN(DecodeInfo); }; bool DecodeUtterance(kaldi::FasterDecoder *decoder, kaldi::DecodableInterface *decodable, DecodeInfo *info, const string &uttid, int32 num_frames, BaseFloat *total_like) { decoder->Decode(decodable); KALDI_LOG << "Length of file is " << num_frames; VectorFst decoded; // linear FST. if ( (info->allow_partial || decoder->ReachedFinal()) && decoder->GetBestPath(&decoded) ) { if (!decoder->ReachedFinal()) KALDI_WARN << "Decoder did not reach end-state, outputting partial " "traceback."; vector alignment, words; LatticeWeight weight; GetLinearSymbolSequence(decoded, &alignment, &words, &weight); info->words_writer.Write(uttid, words); if (info->alignment_writer.IsOpen()) info->alignment_writer.Write(uttid, alignment); if (info->word_syms != NULL) { std::ostringstream ss; ss << uttid << ' '; for (size_t i = 0; i < words.size(); i++) { string s = info->word_syms->Find(words[i]); if (s == "") KALDI_ERR << "Word-id " << words[i] << " not in symbol table."; ss << s << ' '; } ss << '\n'; KALDI_LOG << ss.str(); } BaseFloat like = -weight.Value1() -weight.Value2(); KALDI_LOG << "Log-like per frame = " << (like/num_frames); (*total_like) += like; return true; } else { KALDI_WARN << "Did not successfully decode utterance, length = " << num_frames; return false; } } int main(int argc, char *argv[]) { try { using namespace kaldi; typedef kaldi::int32 int32; const char *usage = "Decode features using GMM-based model.\n" "Usage: gmm-decode-faster-regtree-fmllr [options] model-in fst-in " "regtree-in features-rspecifier transforms-rspecifier " "words-wspecifier [alignments-wspecifier]\n"; ParseOptions po(usage); bool binary = true; bool allow_partial = true; BaseFloat acoustic_scale = 0.1; std::string word_syms_filename, utt2spk_rspecifier; FasterDecoderOptions decoder_opts; decoder_opts.Register(&po, true); // true == include obscure settings. po.Register("utt2spk", &utt2spk_rspecifier, "rspecifier for utterance to " "speaker map"); po.Register("binary", &binary, "Write output in binary mode"); po.Register("acoustic-scale", &acoustic_scale, "Scaling factor for acoustic likelihoods"); po.Register("word-symbol-table", &word_syms_filename, "Symbol table for words [for debug output]"); po.Register("allow-partial", &allow_partial, "Produce output even when final state was not reached"); po.Read(argc, argv); if (po.NumArgs() < 6 || po.NumArgs() > 7) { po.PrintUsage(); exit(1); } std::string model_in_filename = po.GetArg(1), fst_in_filename = po.GetArg(2), regtree_filename = po.GetArg(3), feature_rspecifier = po.GetArg(4), xforms_rspecifier = po.GetArg(5), words_wspecifier = po.GetArg(6), alignment_wspecifier = po.GetOptArg(7); TransitionModel trans_model; AmDiagGmm am_gmm; { bool binary_read; Input ki(model_in_filename, &binary_read); trans_model.Read(ki.Stream(), binary_read); am_gmm.Read(ki.Stream(), binary_read); } VectorFst *decode_fst = fst::ReadFstKaldi(fst_in_filename); RegressionTree regtree; { bool binary_read; Input in(regtree_filename, &binary_read); regtree.Read(in.Stream(), binary_read, am_gmm); } RandomAccessRegtreeFmllrDiagGmmReaderMapped fmllr_reader(xforms_rspecifier, utt2spk_rspecifier); Int32VectorWriter words_writer(words_wspecifier); Int32VectorWriter alignment_writer(alignment_wspecifier); fst::SymbolTable *word_syms = NULL; if (word_syms_filename != "") { word_syms = fst::SymbolTable::ReadText(word_syms_filename); if (!word_syms) { KALDI_ERR << "Could not read symbol table from file " << word_syms_filename; } } BaseFloat tot_like = 0.0; kaldi::int64 frame_count = 0; int num_success = 0, num_fail = 0; FasterDecoder decoder(*decode_fst, decoder_opts); Timer timer; DecodeInfo decode_info(am_gmm, trans_model, &decoder, acoustic_scale, allow_partial, words_writer, alignment_writer, word_syms); SequentialBaseFloatMatrixReader feature_reader(feature_rspecifier); for (; !feature_reader.Done(); feature_reader.Next()) { string utt = feature_reader.Key(); Matrix features(feature_reader.Value()); feature_reader.FreeCurrent(); if (features.NumRows() == 0) { KALDI_WARN << "Zero-length utterance: " << utt; num_fail++; continue; } if (!fmllr_reader.HasKey(utt)) { // Decode without FMLLR if none found KALDI_WARN << "No FMLLR transform for key " << utt << ", decoding without fMLLR."; kaldi::DecodableAmDiagGmmScaled gmm_decodable(am_gmm, trans_model, features, acoustic_scale); if (DecodeUtterance(&decoder, &gmm_decodable, &decode_info, utt, features.NumRows(), &tot_like)) { frame_count += gmm_decodable.NumFramesReady(); num_success++; } else { num_fail++; } continue; } // If found, load the transforms for the current utterance. RegtreeFmllrDiagGmm fmllr(fmllr_reader.Value(utt)); if (fmllr.NumRegClasses() == 1) { Matrix xformed_features(features); Matrix fmllr_matrix; fmllr.GetXformMatrix(0, &fmllr_matrix); for (int32 i = 0; i < xformed_features.NumRows(); i++) { SubVector row(xformed_features, i); ApplyAffineTransform(fmllr_matrix, &row); } kaldi::DecodableAmDiagGmmScaled gmm_decodable(am_gmm, trans_model, xformed_features, acoustic_scale); if (DecodeUtterance(&decoder, &gmm_decodable, &decode_info, utt, xformed_features.NumRows(), &tot_like)) { frame_count += gmm_decodable.NumFramesReady(); num_success++; } else { num_fail++; } } else { kaldi::DecodableAmDiagGmmRegtreeFmllr gmm_decodable(am_gmm, trans_model, features, fmllr, regtree, acoustic_scale); if (DecodeUtterance(&decoder, &gmm_decodable, &decode_info, utt, features.NumRows(), &tot_like)) { frame_count += gmm_decodable.NumFramesReady(); num_success++; } else { num_fail++; } } } // end looping over all utterances KALDI_LOG << "Average log-likelihood per frame is " << (tot_like / frame_count) << " over " << frame_count << " frames."; double elapsed = timer.Elapsed(); KALDI_LOG << "Time taken [excluding initialization] " << elapsed << "s: real-time factor assuming 100 frames/sec is " << (elapsed * 100.0 / frame_count); KALDI_LOG << "Done " << num_success << " utterances, failed for " << num_fail; delete word_syms; delete decode_fst; if (num_success != 0) return 0; else return 1; } catch(const std::exception &e) { std::cerr << e.what(); return -1; } }