// gmmbin/gmm-est-fmllr-raw.cc // Copyright 2013 Johns Hopkins University (author: Daniel Povey) // 2014 Guoguo Chen // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #include "base/kaldi-common.h" #include "transform/fmllr-raw.h" #include "gmm/am-diag-gmm.h" #include "hmm/transition-model.h" #include "util/common-utils.h" #include "hmm/posterior.h" namespace kaldi { void AccStatsForUtterance(const TransitionModel &trans_model, const AmDiagGmm &am_gmm, const Posterior &post, const Matrix &feats, FmllrRawAccs *accs) { Posterior pdf_post; ConvertPosteriorToPdfs(trans_model, post, &pdf_post); for (size_t t = 0; t < post.size(); t++) { for (size_t i = 0; i < pdf_post[t].size(); i++) { int32 pdf = pdf_post[t][i].first; BaseFloat weight = pdf_post[t][i].second; accs->AccumulateForGmm(am_gmm.GetPdf(pdf), feats.Row(t), weight); } } } } int main(int argc, char *argv[]) { try { typedef kaldi::int32 int32; using namespace kaldi; const char *usage = "Estimate fMLLR transforms in the space before splicing and linear transforms\n" "such as LDA+MLLT, but using models in the space transformed by these transforms\n" "Requires the original spliced features, and the full LDA+MLLT (or similar) matrix\n" "including the 'rejected' rows (see the program get-full-lda-mat)\n" "Usage: gmm-est-fmllr-raw [options] " " \n"; int32 raw_feat_dim = 13; ParseOptions po(usage); FmllrRawOptions opts; std::string spk2utt_rspecifier; po.Register("spk2utt", &spk2utt_rspecifier, "rspecifier for speaker to " "utterance-list map"); po.Register("raw-feat-dim", &raw_feat_dim, "Dimension of raw features " "prior to splicing"); opts.Register(&po); po.Read(argc, argv); if (po.NumArgs() != 5) { po.PrintUsage(); exit(1); } std::string model_rxfilename = po.GetArg(1), full_lda_mat_rxfilename = po.GetArg(2), feature_rspecifier = po.GetArg(3), post_rspecifier = po.GetArg(4), transform_wspecifier = po.GetArg(5); AmDiagGmm am_gmm; TransitionModel trans_model; { bool binary; Input ki(model_rxfilename, &binary); trans_model.Read(ki.Stream(), binary); am_gmm.Read(ki.Stream(), binary); } Matrix full_lda_mat; ReadKaldiObject(full_lda_mat_rxfilename, &full_lda_mat); RandomAccessPosteriorReader post_reader(post_rspecifier); BaseFloatMatrixWriter transform_writer(transform_wspecifier); double tot_auxf_impr = 0.0, tot_count = 0.0; int32 num_done = 0, num_err = 0; if (!spk2utt_rspecifier.empty()) { // Adapting per speaker SequentialTokenVectorReader spk2utt_reader(spk2utt_rspecifier); RandomAccessBaseFloatMatrixReader feature_reader(feature_rspecifier); for (; !spk2utt_reader.Done(); spk2utt_reader.Next()) { FmllrRawAccs accs(raw_feat_dim, am_gmm.Dim(), full_lda_mat); std::string spk = spk2utt_reader.Key(); const std::vector &uttlist = spk2utt_reader.Value(); for (size_t i = 0; i < uttlist.size(); i++) { std::string utt = uttlist[i]; if (!feature_reader.HasKey(utt)) { KALDI_WARN << "Features not found for utterance " << utt; num_err++; continue; } if (!post_reader.HasKey(utt)) { KALDI_WARN << "Posteriors not found for utterance " << utt; num_err++; continue; } const Matrix &feats = feature_reader.Value(utt); const Posterior &post = post_reader.Value(utt); if (static_cast(post.size()) != feats.NumRows()) { KALDI_WARN << "Size mismatch between posteriors " << post.size() << " and features " << feats.NumRows(); num_err++; continue; } AccStatsForUtterance(trans_model, am_gmm, post, feats, &accs); num_done++; } BaseFloat auxf_impr, count; { Matrix transform(raw_feat_dim, raw_feat_dim + 1); transform.SetUnit(); accs.Update(opts, &transform, &auxf_impr, &count); transform_writer.Write(spk, transform); } KALDI_LOG << "For speaker " << spk << ", auxf-impr from raw fMLLR is " << (auxf_impr/count) << " over " << count << " frames."; tot_auxf_impr += auxf_impr; tot_count += count; } } else { // --spk2utt option not given -> adapt per utterance. SequentialBaseFloatMatrixReader feature_reader(feature_rspecifier); for (; !feature_reader.Done(); feature_reader.Next()) { std::string utt = feature_reader.Key(); if (!post_reader.HasKey(utt)) { KALDI_WARN << "Posteriors not found for utterance " << utt; num_err++; continue; } const Matrix &feats = feature_reader.Value(); const Posterior &post = post_reader.Value(utt); if (static_cast(post.size()) != feats.NumRows()) { KALDI_WARN << "Size mismatch between posteriors " << post.size() << " and features " << feats.NumRows(); num_err++; continue; } FmllrRawAccs accs(raw_feat_dim, am_gmm.Dim(), full_lda_mat); AccStatsForUtterance(trans_model, am_gmm, post, feats, &accs); BaseFloat auxf_impr, count; { Matrix transform(raw_feat_dim, raw_feat_dim + 1); transform.SetUnit(); accs.Update(opts, &transform, &auxf_impr, &count); transform_writer.Write(utt, transform); } KALDI_LOG << "For utterance " << utt << ", auxf-impr from raw fMLLR is " << (auxf_impr/count) << " over " << count << " frames."; tot_auxf_impr += auxf_impr; tot_count += count; num_done++; } } KALDI_LOG << "Processed " << num_done << " utterances, " << num_err << " had errors."; KALDI_LOG << "Overall raw-fMLLR auxf impr per frame is " << (tot_auxf_impr / tot_count) << " over " << tot_count << " frames."; return (num_done != 0 ? 0 : 1); } catch(const std::exception &e) { std::cerr << e.what(); return -1; } }