// gmmbin/gmm-est-fmllr.cc // Copyright 2009-2011 Microsoft Corporation; Saarland University // 2013 Johns Hopkins University (author: Daniel Povey) // 2014 Guoguo Chen // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #include using std::string; #include using std::vector; #include "base/kaldi-common.h" #include "util/common-utils.h" #include "gmm/am-diag-gmm.h" #include "hmm/transition-model.h" #include "transform/fmllr-diag-gmm.h" #include "hmm/posterior.h" namespace kaldi { void AccumulateForUtterance(const Matrix &feats, const Posterior &post, const TransitionModel &trans_model, const AmDiagGmm &am_gmm, FmllrDiagGmmAccs *spk_stats) { Posterior pdf_post; ConvertPosteriorToPdfs(trans_model, post, &pdf_post); for (size_t i = 0; i < post.size(); i++) { for (size_t j = 0; j < pdf_post[i].size(); j++) { int32 pdf_id = pdf_post[i][j].first; spk_stats->AccumulateForGmm(am_gmm.GetPdf(pdf_id), feats.Row(i), pdf_post[i][j].second); } } } } int main(int argc, char *argv[]) { try { typedef kaldi::int32 int32; using namespace kaldi; const char *usage = "Estimate global fMLLR transforms, either per utterance or for the supplied\n" "set of speakers (spk2utt option). Reads posteriors (on transition-ids). Writes\n" "to a table of matrices.\n" "Usage: gmm-est-fmllr [options] " " \n"; ParseOptions po(usage); FmllrOptions fmllr_opts; string spk2utt_rspecifier; po.Register("spk2utt", &spk2utt_rspecifier, "rspecifier for speaker to " "utterance-list map"); fmllr_opts.Register(&po); po.Read(argc, argv); if (po.NumArgs() != 4) { po.PrintUsage(); exit(1); } string model_rxfilename = po.GetArg(1), feature_rspecifier = po.GetArg(2), post_rspecifier = po.GetArg(3), trans_wspecifier = po.GetArg(4); TransitionModel trans_model; AmDiagGmm am_gmm; { bool binary; Input ki(model_rxfilename, &binary); trans_model.Read(ki.Stream(), binary); am_gmm.Read(ki.Stream(), binary); } RandomAccessPosteriorReader post_reader(post_rspecifier); double tot_impr = 0.0, tot_t = 0.0; BaseFloatMatrixWriter transform_writer(trans_wspecifier); int32 num_done = 0, num_no_post = 0, num_other_error = 0; if (spk2utt_rspecifier != "") { // per-speaker adaptation SequentialTokenVectorReader spk2utt_reader(spk2utt_rspecifier); RandomAccessBaseFloatMatrixReader feature_reader(feature_rspecifier); for (; !spk2utt_reader.Done(); spk2utt_reader.Next()) { FmllrDiagGmmAccs spk_stats(am_gmm.Dim(), fmllr_opts); string spk = spk2utt_reader.Key(); const vector &uttlist = spk2utt_reader.Value(); for (size_t i = 0; i < uttlist.size(); i++) { std::string utt = uttlist[i]; if (!feature_reader.HasKey(utt)) { KALDI_WARN << "Did not find features for utterance " << utt; num_other_error++; continue; } if (!post_reader.HasKey(utt)) { KALDI_WARN << "Did not find posteriors for utterance " << utt; num_no_post++; continue; } const Matrix &feats = feature_reader.Value(utt); const Posterior &post = post_reader.Value(utt); if (static_cast(post.size()) != feats.NumRows()) { KALDI_WARN << "Posterior vector has wrong size " << (post.size()) << " vs. " << (feats.NumRows()); num_other_error++; continue; } AccumulateForUtterance(feats, post, trans_model, am_gmm, &spk_stats); num_done++; } // end looping over all utterances of the current speaker BaseFloat impr, spk_tot_t; { // Compute the transform and write it out. Matrix transform(am_gmm.Dim(), am_gmm.Dim()+1); transform.SetUnit(); spk_stats.Update(fmllr_opts, &transform, &impr, &spk_tot_t); transform_writer.Write(spk, transform); } KALDI_LOG << "For speaker " << spk << ", auxf-impr from fMLLR is " << (impr/spk_tot_t) << ", over " << spk_tot_t << " frames."; tot_impr += impr; tot_t += spk_tot_t; } // end looping over speakers } else { // per-utterance adaptation SequentialBaseFloatMatrixReader feature_reader(feature_rspecifier); for (; !feature_reader.Done(); feature_reader.Next()) { string utt = feature_reader.Key(); if (!post_reader.HasKey(utt)) { KALDI_WARN << "Did not find posts for utterance " << utt; num_no_post++; continue; } const Matrix &feats = feature_reader.Value(); const Posterior &post = post_reader.Value(utt); if (static_cast(post.size()) != feats.NumRows()) { KALDI_WARN << "Posterior has wrong size " << (post.size()) << " vs. " << (feats.NumRows()); num_other_error++; continue; } num_done++; FmllrDiagGmmAccs spk_stats(am_gmm.Dim(), fmllr_opts); AccumulateForUtterance(feats, post, trans_model, am_gmm, &spk_stats); BaseFloat impr, utt_tot_t; { // Compute the transform and write it out. Matrix transform(am_gmm.Dim(), am_gmm.Dim()+1); transform.SetUnit(); spk_stats.Update(fmllr_opts, &transform, &impr, &utt_tot_t); transform_writer.Write(utt, transform); } KALDI_LOG << "For utterance " << utt << ", auxf-impr from fMLLR is " << (impr/utt_tot_t) << ", over " << utt_tot_t << " frames."; tot_impr += impr; tot_t += utt_tot_t; } } KALDI_LOG << "Done " << num_done << " files, " << num_no_post << " with no posts, " << num_other_error << " with other errors."; KALDI_LOG << "Overall fMLLR auxf impr per frame is " << (tot_impr / tot_t) << " over " << tot_t << " frames."; return (num_done != 0 ? 0 : 1); } catch(const std::exception &e) { std::cerr << e.what(); return -1; } }