// gmmbin/gmm-est-regtree-fmllr.cc // Copyright 2009-2011 Saarland University; Microsoft Corporation // 2014 Guoguo Chen // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #include using std::string; #include using std::vector; #include "base/kaldi-common.h" #include "util/common-utils.h" #include "gmm/am-diag-gmm.h" #include "hmm/transition-model.h" #include "hmm/posterior.h" #include "transform/regtree-fmllr-diag-gmm.h" int main(int argc, char *argv[]) { try { typedef kaldi::int32 int32; using namespace kaldi; const char *usage = "Compute FMLLR transforms per-utterance (default) or per-speaker for " "the supplied set of speakers (spk2utt option). Note: writes RegtreeFmllrDiagGmm objects\n" "Usage: gmm-est-regtree-fmllr [options] " " \n"; ParseOptions po(usage); string spk2utt_rspecifier; bool binary = true; po.Register("spk2utt", &spk2utt_rspecifier, "rspecifier for speaker to " "utterance-list map"); po.Register("binary", &binary, "Write output in binary mode"); // register other modules RegtreeFmllrOptions opts; opts.Register(&po); po.Read(argc, argv); if (po.NumArgs() != 5) { po.PrintUsage(); exit(1); } string model_filename = po.GetArg(1), feature_rspecifier = po.GetArg(2), posteriors_rspecifier = po.GetArg(3), regtree_filename = po.GetArg(4), xforms_wspecifier = po.GetArg(5); RandomAccessPosteriorReader posteriors_reader(posteriors_rspecifier); RegtreeFmllrDiagGmmWriter fmllr_writer(xforms_wspecifier); AmDiagGmm am_gmm; TransitionModel trans_model; { bool binary; Input ki(model_filename, &binary); trans_model.Read(ki.Stream(), binary); am_gmm.Read(ki.Stream(), binary); } RegressionTree regtree; { bool binary; Input in(regtree_filename, &binary); regtree.Read(in.Stream(), binary, am_gmm); } RegtreeFmllrDiagGmm fmllr_xforms; RegtreeFmllrDiagGmmAccs fmllr_accs; fmllr_accs.Init(regtree.NumBaseclasses(), am_gmm.Dim()); double tot_like = 0.0, tot_t = 0; int32 num_done = 0, num_no_posterior = 0, num_other_error = 0; double tot_objf_impr = 0.0, tot_t_objf = 0.0; if (spk2utt_rspecifier != "") { // per-speaker adaptation SequentialTokenVectorReader spk2utt_reader(spk2utt_rspecifier); RandomAccessBaseFloatMatrixReader feature_reader(feature_rspecifier); for (; !spk2utt_reader.Done(); spk2utt_reader.Next()) { string spk = spk2utt_reader.Key(); fmllr_accs.SetZero(); const vector &uttlist = spk2utt_reader.Value(); for (vector::const_iterator utt_itr = uttlist.begin(), itr_end = uttlist.end(); utt_itr != itr_end; ++utt_itr) { if (!feature_reader.HasKey(*utt_itr)) { KALDI_WARN << "Did not find features for utterance " << *utt_itr; continue; } if (!posteriors_reader.HasKey(*utt_itr)) { KALDI_WARN << "Did not find posteriors for utterance " << *utt_itr; num_no_posterior++; continue; } const Matrix &feats = feature_reader.Value(*utt_itr); const Posterior &posterior = posteriors_reader.Value(*utt_itr); if (static_cast(posterior.size()) != feats.NumRows()) { KALDI_WARN << "Posteriors has wrong size " << (posterior.size()) << " vs. " << (feats.NumRows()); num_other_error++; continue; } BaseFloat file_like = 0.0, file_t = 0.0; Posterior pdf_posterior; ConvertPosteriorToPdfs(trans_model, posterior, &pdf_posterior); for (size_t i = 0; i < posterior.size(); i++) { for (size_t j = 0; j < pdf_posterior[i].size(); j++) { int32 pdf_id = pdf_posterior[i][j].first; BaseFloat prob = pdf_posterior[i][j].second; file_like += fmllr_accs.AccumulateForGmm(regtree, am_gmm, feats.Row(i), pdf_id, prob); file_t += prob; } } KALDI_VLOG(2) << "Average like for this file is " << (file_like/file_t) << " over " << file_t << " frames."; tot_like += file_like; tot_t += file_t; num_done++; if (num_done % 10 == 0) KALDI_VLOG(1) << "Avg like per frame so far is " << (tot_like / tot_t); } // end looping over all utterances of the current speaker BaseFloat objf_impr, t; fmllr_accs.Update(regtree, opts, &fmllr_xforms, &objf_impr, &t); KALDI_LOG << "fMLLR objf improvement for speaker " << spk << " is " << (objf_impr/(t+1.0e-10)) << " per frame over " << t << " frames."; tot_objf_impr += objf_impr; tot_t_objf += t; fmllr_writer.Write(spk, fmllr_xforms); } // end looping over speakers } else { // per-utterance adaptation SequentialBaseFloatMatrixReader feature_reader(feature_rspecifier); for (; !feature_reader.Done(); feature_reader.Next()) { string key = feature_reader.Key(); if (!posteriors_reader.HasKey(key)) { KALDI_WARN << "Did not find posteriors for utterance " << key; num_no_posterior++; continue; } const Matrix &feats = feature_reader.Value(); const Posterior &posterior = posteriors_reader.Value(key); if (static_cast(posterior.size()) != feats.NumRows()) { KALDI_WARN << "Posteriors has wrong size " << (posterior.size()) << " vs. " << (feats.NumRows()); num_other_error++; continue; } num_done++; BaseFloat file_like = 0.0, file_t = 0.0; fmllr_accs.SetZero(); Posterior pdf_posterior; ConvertPosteriorToPdfs(trans_model, posterior, &pdf_posterior); for (size_t i = 0; i < posterior.size(); i++) { for (size_t j = 0; j < pdf_posterior[i].size(); j++) { int32 pdf_id = pdf_posterior[i][j].first; BaseFloat prob = pdf_posterior[i][j].second; file_like += fmllr_accs.AccumulateForGmm(regtree, am_gmm, feats.Row(i), pdf_id, prob); file_t += prob; } } KALDI_VLOG(2) << "Average like for this file is " << (file_like/file_t) << " over " << file_t << " frames."; tot_like += file_like; tot_t += file_t; if (num_done % 10 == 0) KALDI_VLOG(1) << "Avg like per frame so far is " << (tot_like / tot_t); BaseFloat objf_impr, t; fmllr_accs.Update(regtree, opts, &fmllr_xforms, &objf_impr, &t); KALDI_LOG << "fMLLR objf improvement for utterance " << key << " is " << (objf_impr/(t+1.0e-10)) << " per frame over " << t << " frames."; tot_objf_impr += objf_impr; tot_t_objf += t; fmllr_writer.Write(feature_reader.Key(), fmllr_xforms); } } KALDI_LOG << "Done " << num_done << " files, " << num_no_posterior << " with no posteriors, " << num_other_error << " with other errors."; KALDI_LOG << "Overall objf improvement from MLLR is " << (tot_objf_impr/tot_t_objf) << " per frame " << " over " << tot_t_objf << " frames."; KALDI_LOG << "Overall acoustic likelihood was " << (tot_like/tot_t) << " over " << tot_t << " frames."; return 0; } catch(const std::exception &e) { std::cerr << e.what(); return -1; } }