// gmmbin/gmm-est.cc // Copyright 2009-2011 Microsoft Corporation // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #include "base/kaldi-common.h" #include "util/common-utils.h" #include "gmm/am-diag-gmm.h" #include "tree/context-dep.h" #include "hmm/transition-model.h" #include "gmm/mle-am-diag-gmm.h" int main(int argc, char *argv[]) { try { using namespace kaldi; typedef kaldi::int32 int32; const char *usage = "Do Maximum Likelihood re-estimation of GMM-based acoustic model\n" "Usage: gmm-est [options] \n" "e.g.: gmm-est 1.mdl 1.acc 2.mdl\n"; bool binary_write = true; MleTransitionUpdateConfig tcfg; MleDiagGmmOptions gmm_opts; int32 mixup = 0; int32 mixdown = 0; BaseFloat perturb_factor = 0.01; BaseFloat power = 0.2; BaseFloat min_count = 20.0; std::string update_flags_str = "mvwt"; std::string occs_out_filename; ParseOptions po(usage); po.Register("binary", &binary_write, "Write output in binary mode"); po.Register("mix-up", &mixup, "Increase number of mixture components to " "this overall target."); po.Register("min-count", &min_count, "Minimum per-Gaussian count enforced while mixing up and down."); po.Register("mix-down", &mixdown, "If nonzero, merge mixture components to this " "target."); po.Register("power", &power, "If mixing up, power to allocate Gaussians to" " states."); po.Register("update-flags", &update_flags_str, "Which GMM parameters to " "update: subset of mvwt."); po.Register("perturb-factor", &perturb_factor, "While mixing up, perturb " "means by standard deviation times this factor."); po.Register("write-occs", &occs_out_filename, "File to write pdf " "occupation counts to."); tcfg.Register(&po); gmm_opts.Register(&po); po.Read(argc, argv); if (po.NumArgs() != 3) { po.PrintUsage(); exit(1); } kaldi::GmmFlagsType update_flags = StringToGmmFlags(update_flags_str); std::string model_in_filename = po.GetArg(1), stats_filename = po.GetArg(2), model_out_filename = po.GetArg(3); AmDiagGmm am_gmm; TransitionModel trans_model; { bool binary_read; Input ki(model_in_filename, &binary_read); trans_model.Read(ki.Stream(), binary_read); am_gmm.Read(ki.Stream(), binary_read); } Vector transition_accs; AccumAmDiagGmm gmm_accs; { bool binary; Input ki(stats_filename, &binary); transition_accs.Read(ki.Stream(), binary); gmm_accs.Read(ki.Stream(), binary, true); // true == add; doesn't matter here. } if (update_flags & kGmmTransitions) { // Update transition model. BaseFloat objf_impr, count; trans_model.MleUpdate(transition_accs, tcfg, &objf_impr, &count); KALDI_LOG << "Transition model update: Overall " << (objf_impr/count) << " log-like improvement per frame over " << (count) << " frames."; } { // Update GMMs. BaseFloat objf_impr, count; BaseFloat tot_like = gmm_accs.TotLogLike(), tot_t = gmm_accs.TotCount(); MleAmDiagGmmUpdate(gmm_opts, gmm_accs, update_flags, &am_gmm, &objf_impr, &count); KALDI_LOG << "GMM update: Overall " << (objf_impr/count) << " objective function improvement per frame over " << count << " frames"; KALDI_LOG << "GMM update: Overall avg like per frame = " << (tot_like/tot_t) << " over " << tot_t << " frames."; } if (mixup != 0 || mixdown != 0 || !occs_out_filename.empty()) { // get pdf occupation counts Vector pdf_occs; pdf_occs.Resize(gmm_accs.NumAccs()); for (int i = 0; i < gmm_accs.NumAccs(); i++) pdf_occs(i) = gmm_accs.GetAcc(i).occupancy().Sum(); if (mixdown != 0) am_gmm.MergeByCount(pdf_occs, mixdown, power, min_count); if (mixup != 0) am_gmm.SplitByCount(pdf_occs, mixup, perturb_factor, power, min_count); if (!occs_out_filename.empty()) { bool binary = false; WriteKaldiObject(pdf_occs, occs_out_filename, binary); } } { Output ko(model_out_filename, binary_write); trans_model.Write(ko.Stream(), binary_write); am_gmm.Write(ko.Stream(), binary_write); } KALDI_LOG << "Written model to " << model_out_filename; return 0; } catch(const std::exception &e) { std::cerr << e.what() << '\n'; return -1; } }