// gmmbin/gmm-fmpe-acc-stats.cc // Copyright 2012 Johns Hopkins University (Author: Daniel Povey) // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #include "base/kaldi-common.h" #include "util/common-utils.h" #include "gmm/am-diag-gmm.h" #include "hmm/transition-model.h" #include "transform/fmpe.h" int main(int argc, char *argv[]) { using namespace kaldi; using kaldi::int32; try { const char *usage = "Accumulate stats for fMPE training, using GMM model. Note: this could\n" "be done using gmm-get-feat-deriv and fmpe-acc-stats (but you'd be computing\n" "the features twice). Features input should be pre-fMPE features.\n" "\n" "Usage: gmm-fmpe-acc-stats [options] " " \n" "e.g.: \n" " gmm-fmpe-acc-stats --model-derivative 1.accs 1.mdl 1.fmpe \"$feats\" ark:1.gselect ark:1.post 1.fmpe_stats\n"; ParseOptions po(usage); bool binary = true; std::string model_derivative_rxfilename; po.Register("binary", &binary, "If true, write stats in binary mode."); po.Register("model-derivative", &model_derivative_rxfilename, "GMM-accs file containing model derivative [note: contains no transition stats]. Used for indirect differential. Warning: this will only work correctly in the case of MMI/BMMI objective function, with non-canceled stats."); po.Read(argc, argv); if (po.NumArgs() != 6) { po.PrintUsage(); exit(1); } std::string model_rxfilename = po.GetArg(1), fmpe_rxfilename = po.GetArg(2), feature_rspecifier = po.GetArg(3), gselect_rspecifier = po.GetArg(4), posteriors_rspecifier = po.GetArg(5), stats_wxfilename = po.GetArg(6); AmDiagGmm am_gmm; TransitionModel trans_model; { bool binary; Input ki(model_rxfilename, &binary); trans_model.Read(ki.Stream(), binary); am_gmm.Read(ki.Stream(), binary); } Fmpe fmpe; ReadKaldiObject(fmpe_rxfilename, &fmpe); bool have_indirect = (model_derivative_rxfilename != ""); AccumAmDiagGmm model_derivative; if (have_indirect) ReadKaldiObject(model_derivative_rxfilename, &model_derivative); FmpeStats fmpe_stats(fmpe); SequentialBaseFloatMatrixReader feature_reader(feature_rspecifier); RandomAccessInt32VectorVectorReader gselect_reader(gselect_rspecifier); RandomAccessPosteriorReader posteriors_reader(posteriors_rspecifier); BaseFloat tot_like = 0.0; // tot like weighted by posterior. int32 num_frames = 0; int32 num_done = 0, num_err = 0; for (; !feature_reader.Done(); feature_reader.Next()) { std::string key = feature_reader.Key(); if (!posteriors_reader.HasKey(key)) { num_err++; KALDI_WARN << "No posteriors for utterance " << key; continue; } const Matrix &feat_in = feature_reader.Value(); const Posterior &posterior = posteriors_reader.Value(key); if (static_cast(posterior.size()) != feat_in.NumRows()) { KALDI_WARN << "Posterior vector has wrong size " << (posterior.size()) << " vs. "<< (feat_in.NumRows()); num_err++; continue; } if (!gselect_reader.HasKey(key)) { KALDI_WARN << "No gselect information for key " << key; num_err++; continue; } const std::vector > &gselect = gselect_reader.Value(key); if (static_cast(gselect.size()) != feat_in.NumRows()) { KALDI_WARN << "gselect information has wrong size"; num_err++; continue; } num_done++; Matrix fmpe_feat(feat_in.NumRows(), feat_in.NumCols()); fmpe.ComputeFeatures(feat_in, gselect, &fmpe_feat); fmpe_feat.AddMat(1.0, feat_in); Matrix direct_deriv, indirect_deriv; tot_like += ComputeAmGmmFeatureDeriv(am_gmm, trans_model, posterior, fmpe_feat, &direct_deriv, (have_indirect ? &model_derivative : NULL), (have_indirect ? &indirect_deriv : NULL)); num_frames += feat_in.NumRows(); fmpe.AccStats(feat_in, gselect, direct_deriv, (have_indirect ? &indirect_deriv : NULL), &fmpe_stats); if (num_done % 100 == 0) KALDI_LOG << "Processed " << num_done << " utterances."; } KALDI_LOG << "Done " << num_done << " files, " << num_err << " with errors."; KALDI_LOG << "Overall weighted acoustic likelihood per frame is " << (tot_like/num_frames) << " over " << num_frames << " frames."; Output ko(stats_wxfilename, binary); fmpe_stats.Write(ko.Stream(), binary); return (num_done != 0 ? 0 : 1); } catch(const std::exception &e) { std::cerr << e.what(); return -1; } }