// gmmbin/gmm-get-stats-deriv.cc // Copyright 2012 Johns Hopkins University (Author: Daniel Povey) // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #include "base/kaldi-common.h" #include "util/common-utils.h" #include "gmm/am-diag-gmm.h" #include "tree/context-dep.h" #include "hmm/transition-model.h" #include "gmm/indirect-diff-diag-gmm.h" int main(int argc, char *argv[]) { try { using namespace kaldi; typedef kaldi::int32 int32; MleDiagGmmOptions gmm_opts; const char *usage = "Get statistics derivative for GMM models\n" "(used in fMPE/fMMI feature-space discriminative training)\n" "Usage: gmm-get-stats-deriv [options] " " \n" "e.g. (for fMMI/fBMMI): gmm-get-stats-deriv 1.mdl 1.acc 2.mdl\n"; bool binary_write = true; MleDiagGmmOptions opts; // Not passed to command-line-- just a mechanism to // ensure our options have the same default values as those ones. BaseFloat min_variance = opts.min_variance; BaseFloat min_gaussian_occupancy = opts.min_gaussian_occupancy; ParseOptions po(usage); po.Register("binary", &binary_write, "Write output in binary mode"); po.Register("min-variance", &min_variance, "Variance floor (absolute variance)."); po.Register("min-gaussian-occupancy", &min_gaussian_occupancy, "Minimum occupancy to update a Gaussian."); po.Read(argc, argv); if (po.NumArgs() != 5) { po.PrintUsage(); exit(1); } std::string model_rxfilename = po.GetArg(1), num_stats_rxfilename = po.GetArg(2), den_stats_rxfilename = po.GetArg(3), ml_stats_rxfilename = po.GetArg(4), deriv_wxfilename = po.GetArg(5); AmDiagGmm am_gmm; TransitionModel trans_model; { bool binary_read; Input ki(model_rxfilename, &binary_read); trans_model.Read(ki.Stream(), binary_read); am_gmm.Read(ki.Stream(), binary_read); } Vector transition_accs; // Reuse this for all transition accs we // read, as it's not needed. AccumAmDiagGmm num_stats, den_stats, ml_stats; { bool binary_read; Input ki(num_stats_rxfilename, &binary_read); transition_accs.Read(ki.Stream(), binary_read); num_stats.Read(ki.Stream(), binary_read, false); } { bool binary_read; Input ki(den_stats_rxfilename, &binary_read); transition_accs.Read(ki.Stream(), binary_read); den_stats.Read(ki.Stream(), binary_read, false); } { bool binary_read; Input ki(ml_stats_rxfilename, &binary_read); transition_accs.Read(ki.Stream(), binary_read); ml_stats.Read(ki.Stream(), binary_read, false); } AccumAmDiagGmm model_deriv; // Use GMM accumulators to represent // derivative of discriminative objective function w.r.t. // accumulated stats. GetStatsDerivative(am_gmm, num_stats, den_stats, ml_stats, min_variance, min_gaussian_occupancy, &model_deriv); WriteKaldiObject(model_deriv, deriv_wxfilename, binary_write); KALDI_LOG << "Computed model derivative and wrote it to " << deriv_wxfilename; return 0; } catch(const std::exception &e) { std::cerr << e.what() << '\n'; return -1; } }