// gmmbin/gmm-global-acc-stats-twofeats.cc // Copyright 2009-2011 Microsoft Corporation; Saarland University // 2014 Johns Hopkins University (author: Daniel Povey) // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #include "base/kaldi-common.h" #include "util/common-utils.h" #include "gmm/model-common.h" #include "gmm/full-gmm.h" #include "gmm/diag-gmm.h" #include "gmm/mle-full-gmm.h" int main(int argc, char *argv[]) { try { using namespace kaldi; const char *usage = "Accumulate stats for training a diagonal-covariance GMM, two-feature version\n" "First features are used to get posteriors, second to accumulate stats\n" "Usage: gmm-global-acc-stats-twofeats [options] " " \n" "e.g.: gmm-global-acc-stats-twofeats 1.mdl scp:train.scp scp:train2.scp 1.acc\n"; ParseOptions po(usage); bool binary = true; std::string update_flags_str = "mvw"; std::string gselect_rspecifier, weights_rspecifier; po.Register("binary", &binary, "Write output in binary mode"); po.Register("update-flags", &update_flags_str, "Which GMM parameters will be " "updated: subset of mvw."); po.Register("gselect", &gselect_rspecifier, "rspecifier for gselect objects " "to limit the #Gaussians accessed on each frame."); po.Register("weights", &weights_rspecifier, "rspecifier for a vector of floats " "for each utterance, that's a per-frame weight."); po.Read(argc, argv); if (po.NumArgs() != 4) { po.PrintUsage(); exit(1); } std::string model_filename = po.GetArg(1), feature1_rspecifier = po.GetArg(2), feature2_rspecifier = po.GetArg(3), accs_wxfilename = po.GetArg(4); DiagGmm gmm; { bool binary_read; Input ki(model_filename, &binary_read); gmm.Read(ki.Stream(), binary_read); } int32 new_dim = 0; AccumDiagGmm gmm_accs; // will initialize once we know new_dim. // gmm_accs.Resize(gmm, StringToGmmFlags(update_flags_str)); double tot_like = 0.0, tot_weight = 0.0; SequentialBaseFloatMatrixReader feature1_reader(feature1_rspecifier); RandomAccessBaseFloatMatrixReader feature2_reader(feature2_rspecifier); RandomAccessInt32VectorVectorReader gselect_reader(gselect_rspecifier); RandomAccessBaseFloatVectorReader weights_reader(weights_rspecifier); int32 num_done = 0, num_err = 0; for (; !feature1_reader.Done(); feature1_reader.Next()) { std::string key = feature1_reader.Key(); if (!feature2_reader.HasKey(key)) { KALDI_WARN << "For utterance " << key << ", second features not present."; num_err++; continue; } const Matrix &mat1 = feature1_reader.Value(); const Matrix &mat2 = feature2_reader.Value(key); int32 file_frames = mat1.NumRows(); KALDI_ASSERT(mat1.NumRows() == mat2.NumRows()); if (new_dim == 0) { new_dim = mat2.NumCols(); gmm_accs.Resize(gmm.NumGauss(), new_dim, StringToGmmFlags(update_flags_str)); } BaseFloat file_like = 0.0, file_weight = 0.0; // total of weights of frames (will each be 1 unless // --weights option supplied. Vector weights; if (weights_rspecifier != "") { // We have per-frame weighting. if (!weights_reader.HasKey(key)) { KALDI_WARN << "No per-frame weights available for utterance " << key; num_err++; continue; } weights = weights_reader.Value(key); if (weights.Dim() != file_frames) { KALDI_WARN << "Weights for utterance " << key << " have wrong dim " << weights.Dim() << " vs. " << file_frames; num_err++; continue; } } if (gselect_rspecifier != "") { if (!gselect_reader.HasKey(key)) { KALDI_WARN << "No gselect information for utterance " << key; num_err++; continue; } const std::vector > &gselect = gselect_reader.Value(key); if (gselect.size() != static_cast(file_frames)) { KALDI_WARN << "gselect information for utterance " << key << " has wrong size " << gselect.size() << " vs. " << file_frames; num_err++; continue; } for (int32 i = 0; i < file_frames; i++) { BaseFloat weight = (weights.Dim() != 0) ? weights(i) : 1.0; if (weight == 0.0) continue; file_weight += weight; SubVector data1(mat1, i), data2(mat2, i); const std::vector &this_gselect = gselect[i]; int32 gselect_size = this_gselect.size(); KALDI_ASSERT(gselect_size > 0); Vector loglikes; gmm.LogLikelihoodsPreselect(data1, this_gselect, &loglikes); file_like += weight * loglikes.ApplySoftMax(); loglikes.Scale(weight); for (int32 j = 0; j < loglikes.Dim(); j++) gmm_accs.AccumulateForComponent(data2, this_gselect[j], loglikes(j)); } } else { // no gselect.. Vector posteriors; for (int32 i = 0; i < file_frames; i++) { BaseFloat weight = (weights.Dim() != 0) ? weights(i) : 1.0; if (weight == 0.0) continue; file_weight += weight; file_like += weight * gmm.ComponentPosteriors(mat1.Row(i), &posteriors); posteriors.Scale(weight); gmm_accs.AccumulateFromPosteriors(mat2.Row(i), posteriors); } } KALDI_VLOG(2) << "File '" << key << "': Average likelihood = " << (file_like/file_weight) << " over " << file_weight <<" frames."; tot_like += file_like; tot_weight += file_weight; num_done++; } KALDI_LOG << "Done " << num_done << " files; " << num_err << " with errors."; KALDI_LOG << "Overall likelihood per " << "frame = " << (tot_like/tot_weight) << " over " << tot_weight << " (weighted) frames."; WriteKaldiObject(gmm_accs, accs_wxfilename, binary); KALDI_LOG << "Written accs to " << accs_wxfilename; return (num_done != 0 ? 0 : 1); } catch(const std::exception &e) { std::cerr << e.what(); return -1; } }