// gmmbin/gmm-global-get-frame-likes.cc // Copyright 2009-2011 Microsoft Corporation; Saarland University // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #include "base/kaldi-common.h" #include "util/common-utils.h" #include "gmm/model-common.h" #include "gmm/full-gmm.h" #include "gmm/diag-gmm.h" #include "gmm/mle-full-gmm.h" int main(int argc, char *argv[]) { try { using namespace kaldi; const char *usage = "Print out per-frame log-likelihoods for each utterance, as an archive\n" "of vectors of floats. If --average=true, prints out the average per-frame\n" "log-likelihood for each utterance, as a single float.\n" "Usage: gmm-global-get-frame-likes [options] " "\n" "e.g.: gmm-global-get-frame-likes 1.mdl scp:train.scp ark:1.likes\n"; ParseOptions po(usage); bool average = false; std::string gselect_rspecifier; po.Register("gselect", &gselect_rspecifier, "rspecifier for gselect objects " "to limit the #Gaussians accessed on each frame."); po.Register("average", &average, "If true, print out the average per-frame " "log-likelihood as a single float per utterance."); po.Read(argc, argv); if (po.NumArgs() != 3) { po.PrintUsage(); exit(1); } std::string model_filename = po.GetArg(1), feature_rspecifier = po.GetArg(2), likes_wspecifier = po.GetArg(3); DiagGmm gmm; { bool binary_read; Input ki(model_filename, &binary_read); gmm.Read(ki.Stream(), binary_read); } double tot_like = 0.0, tot_frames = 0.0; SequentialBaseFloatMatrixReader feature_reader(feature_rspecifier); RandomAccessInt32VectorVectorReader gselect_reader(gselect_rspecifier); BaseFloatVectorWriter likes_writer(average ? "" : likes_wspecifier); BaseFloatWriter average_likes_writer(average ? likes_wspecifier : ""); int32 num_done = 0, num_err = 0; for (; !feature_reader.Done(); feature_reader.Next()) { std::string key = feature_reader.Key(); const Matrix &mat = feature_reader.Value(); int32 file_frames = mat.NumRows(); Vector likes(file_frames); if (gselect_rspecifier != "") { if (!gselect_reader.HasKey(key)) { KALDI_WARN << "No gselect information for utterance " << key; num_err++; continue; } const std::vector > &gselect = gselect_reader.Value(key); if (gselect.size() != static_cast(file_frames)) { KALDI_WARN << "gselect information for utterance " << key << " has wrong size " << gselect.size() << " vs. " << file_frames; num_err++; continue; } for (int32 i = 0; i < file_frames; i++) { SubVector data(mat, i); const std::vector &this_gselect = gselect[i]; int32 gselect_size = this_gselect.size(); KALDI_ASSERT(gselect_size > 0); Vector loglikes; gmm.LogLikelihoodsPreselect(data, this_gselect, &loglikes); likes(i) = loglikes.LogSumExp(); } } else { // no gselect.. for (int32 i = 0; i < file_frames; i++) likes(i) = gmm.LogLikelihood(mat.Row(i)); } tot_like += likes.Sum(); tot_frames += file_frames; if (average) average_likes_writer.Write(key, likes.Sum() / file_frames); else likes_writer.Write(key, likes); num_done++; } KALDI_LOG << "Done " << num_done << " files; " << num_err << " with errors."; KALDI_LOG << "Overall likelihood per " << "frame = " << (tot_like/tot_frames) << " over " << tot_frames << " frames."; return (num_done != 0 ? 0 : 1); } catch(const std::exception &e) { std::cerr << e.what(); return -1; } }