// gmmbin/gmm-latgen-biglm-faster.cc // Copyright 2009-2011 Microsoft Corporation // 2013 Johns Hopkins University (author: Daniel Povey) // 2014 Guoguo Chen // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #include "base/kaldi-common.h" #include "util/common-utils.h" #include "gmm/am-diag-gmm.h" #include "tree/context-dep.h" #include "hmm/transition-model.h" #include "fstext/fstext-lib.h" #include "decoder/lattice-biglm-faster-decoder.h" #include "gmm/decodable-am-diag-gmm.h" #include "base/timer.h" namespace kaldi { // Takes care of output. Returns true on success. bool DecodeUtterance(LatticeBiglmFasterDecoder &decoder, // not const but is really an input. DecodableInterface &decodable, // not const but is really an input. const TransitionModel &trans_model, const fst::SymbolTable *word_syms, std::string utt, double acoustic_scale, bool determinize, bool allow_partial, Int32VectorWriter *alignment_writer, Int32VectorWriter *words_writer, CompactLatticeWriter *compact_lattice_writer, LatticeWriter *lattice_writer, double *like_ptr) { // puts utterance's like in like_ptr on success. using fst::VectorFst; if (!decoder.Decode(&decodable)) { KALDI_WARN << "Failed to decode file " << utt; return false; } if (!decoder.ReachedFinal()) { if (allow_partial) { KALDI_WARN << "Outputting partial output for utterance " << utt << " since no final-state reached\n"; } else { KALDI_WARN << "Not producing output for utterance " << utt << " since no final-state reached and " << "--allow-partial=false.\n"; return false; } } double likelihood; LatticeWeight weight; int32 num_frames; { // First do some stuff with word-level traceback... VectorFst decoded; decoder.GetBestPath(&decoded); if (decoded.NumStates() == 0) // Shouldn't really reach this point as already checked success. KALDI_ERR << "Failed to get traceback for utterance " << utt; std::vector alignment; std::vector words; GetLinearSymbolSequence(decoded, &alignment, &words, &weight); num_frames = alignment.size(); if (words_writer->IsOpen()) words_writer->Write(utt, words); if (alignment_writer->IsOpen()) alignment_writer->Write(utt, alignment); if (word_syms != NULL) { std::cerr << utt << ' '; for (size_t i = 0; i < words.size(); i++) { std::string s = word_syms->Find(words[i]); if (s == "") KALDI_ERR << "Word-id " << words[i] <<" not in symbol table."; std::cerr << s << ' '; } std::cerr << '\n'; } likelihood = -(weight.Value1() + weight.Value2()); } // Get lattice, and do determinization if requested. Lattice lat; decoder.GetRawLattice(&lat); if (lat.NumStates() == 0) KALDI_ERR << "Unexpected problem getting lattice for utterance " << utt; fst::Connect(&lat); if (determinize) { CompactLattice clat; if (!DeterminizeLatticePhonePrunedWrapper( trans_model, &lat, decoder.GetOptions().lattice_beam, &clat, decoder.GetOptions().det_opts)) KALDI_WARN << "Determinization finished earlier than the beam for " << "utterance " << utt; // We'll write the lattice without acoustic scaling. if (acoustic_scale != 0.0) fst::ScaleLattice(fst::AcousticLatticeScale(1.0 / acoustic_scale), &clat); compact_lattice_writer->Write(utt, clat); } else { Lattice fst; decoder.GetRawLattice(&fst); if (fst.NumStates() == 0) KALDI_ERR << "Unexpected problem getting lattice for utterance " << utt; fst::Connect(&fst); // Will get rid of this later... shouldn't have any // disconnected states there, but we seem to. if (acoustic_scale != 0.0) // We'll write the lattice without acoustic scaling fst::ScaleLattice(fst::AcousticLatticeScale(1.0 / acoustic_scale), &fst); lattice_writer->Write(utt, fst); } KALDI_LOG << "Log-like per frame for utterance " << utt << " is " << (likelihood / num_frames) << " over " << num_frames << " frames."; KALDI_VLOG(2) << "Cost for utterance " << utt << " is " << weight.Value1() << " + " << weight.Value2(); *like_ptr = likelihood; return true; } } int main(int argc, char *argv[]) { try { using namespace kaldi; typedef kaldi::int32 int32; using fst::SymbolTable; using fst::VectorFst; using fst::Fst; using fst::StdArc; using fst::ReadFstKaldi; const char *usage = "Generate lattices using GMM-based model.\n" "User supplies LM used to generate decoding graph, and desired LM;\n" "this decoder applies the difference during decoding\n" "Usage: gmm-latgen-biglm-faster [options] model-in (fst-in|fsts-rspecifier) " "oldlm-fst-in newlm-fst-in features-rspecifier" " lattice-wspecifier [ words-wspecifier [alignments-wspecifier] ]\n"; ParseOptions po(usage); Timer timer; bool allow_partial = false; BaseFloat acoustic_scale = 0.1; LatticeBiglmFasterDecoderConfig config; std::string word_syms_filename; config.Register(&po); po.Register("acoustic-scale", &acoustic_scale, "Scaling factor for acoustic likelihoods"); po.Register("word-symbol-table", &word_syms_filename, "Symbol table for words [for debug output]"); po.Register("allow-partial", &allow_partial, "If true, produce output even if end state was not reached."); po.Read(argc, argv); if (po.NumArgs() < 6 || po.NumArgs() > 8) { po.PrintUsage(); exit(1); } std::string model_in_filename = po.GetArg(1), fst_in_str = po.GetArg(2), old_lm_fst_rxfilename = po.GetArg(3), new_lm_fst_rxfilename = po.GetArg(4), feature_rspecifier = po.GetArg(5), lattice_wspecifier = po.GetArg(6), words_wspecifier = po.GetOptArg(7), alignment_wspecifier = po.GetOptArg(8); TransitionModel trans_model; AmDiagGmm am_gmm; { bool binary; Input ki(model_in_filename, &binary); trans_model.Read(ki.Stream(), binary); am_gmm.Read(ki.Stream(), binary); } VectorFst *old_lm_fst = fst::CastOrConvertToVectorFst( fst::ReadFstKaldiGeneric(old_lm_fst_rxfilename)); ApplyProbabilityScale(-1.0, old_lm_fst); // Negate old LM probs... VectorFst *new_lm_fst = fst::CastOrConvertToVectorFst( fst::ReadFstKaldiGeneric(new_lm_fst_rxfilename)); fst::BackoffDeterministicOnDemandFst old_lm_dfst(*old_lm_fst); fst::BackoffDeterministicOnDemandFst new_lm_dfst(*new_lm_fst); fst::ComposeDeterministicOnDemandFst compose_dfst(&old_lm_dfst, &new_lm_dfst); fst::CacheDeterministicOnDemandFst cache_dfst(&compose_dfst); bool determinize = config.determinize_lattice; CompactLatticeWriter compact_lattice_writer; LatticeWriter lattice_writer; if (! (determinize ? compact_lattice_writer.Open(lattice_wspecifier) : lattice_writer.Open(lattice_wspecifier))) KALDI_ERR << "Could not open table for writing lattices: " << lattice_wspecifier; Int32VectorWriter words_writer(words_wspecifier); Int32VectorWriter alignment_writer(alignment_wspecifier); fst::SymbolTable *word_syms = NULL; if (word_syms_filename != "") if (!(word_syms = fst::SymbolTable::ReadText(word_syms_filename))) KALDI_ERR << "Could not read symbol table from file " << word_syms_filename; double tot_like = 0.0; kaldi::int64 frame_count = 0; int num_success = 0, num_fail = 0; if (ClassifyRspecifier(fst_in_str, NULL, NULL) == kNoRspecifier) { SequentialBaseFloatMatrixReader feature_reader(feature_rspecifier); // Input FST is just one FST, not a table of FSTs. Fst *decode_fst = fst::ReadFstKaldiGeneric(fst_in_str); { LatticeBiglmFasterDecoder decoder(*decode_fst, config, &cache_dfst); for (; !feature_reader.Done(); feature_reader.Next()) { std::string utt = feature_reader.Key(); Matrix features (feature_reader.Value()); feature_reader.FreeCurrent(); if (features.NumRows() == 0) { KALDI_WARN << "Zero-length utterance: " << utt; num_fail++; continue; } DecodableAmDiagGmmScaled gmm_decodable(am_gmm, trans_model, features, acoustic_scale); double like; if (DecodeUtterance(decoder, gmm_decodable, trans_model, word_syms, utt, acoustic_scale, determinize, allow_partial, &alignment_writer, &words_writer, &compact_lattice_writer, &lattice_writer, &like)) { tot_like += like; frame_count += features.NumRows(); num_success++; } else num_fail++; } } delete decode_fst; // delete this only after decoder goes out of scope. } else { // We have different FSTs for different utterances. SequentialTableReader fst_reader(fst_in_str); RandomAccessBaseFloatMatrixReader feature_reader(feature_rspecifier); for (; !fst_reader.Done(); fst_reader.Next()) { std::string utt = fst_reader.Key(); if (!feature_reader.HasKey(utt)) { KALDI_WARN << "Not decoding utterance " << utt << " because no features available."; num_fail++; continue; } const Matrix &features = feature_reader.Value(utt); if (features.NumRows() == 0) { KALDI_WARN << "Zero-length utterance: " << utt; num_fail++; continue; } LatticeBiglmFasterDecoder decoder(fst_reader.Value(), config, &cache_dfst); DecodableAmDiagGmmScaled gmm_decodable(am_gmm, trans_model, features, acoustic_scale); double like; if (DecodeUtterance(decoder, gmm_decodable, trans_model, word_syms, utt, acoustic_scale, determinize, allow_partial, &alignment_writer, &words_writer, &compact_lattice_writer, &lattice_writer, &like)) { tot_like += like; frame_count += features.NumRows(); num_success++; } else num_fail++; } } double elapsed = timer.Elapsed(); KALDI_LOG << "Time taken "<< elapsed << "s: real-time factor assuming 100 frames/sec is " << (elapsed*100.0/frame_count); KALDI_LOG << "Done " << num_success << " utterances, failed for " << num_fail; KALDI_LOG << "Overall log-likelihood per frame is " << (tot_like/frame_count) << " over " << frame_count<<" frames."; delete word_syms; if (num_success != 0) return 0; else return 1; } catch(const std::exception &e) { std::cerr << e.what(); return -1; } }